Otwarty dostęp

Elastic-Plastic Analysis for Circumferential through Crack at Boundary of Semi’S Brace under Beam Wave


Zacytuj

1. Colin, H., Espen, F., Martyn, T. (2014). Worldwide Offshore Accident Databank, Det Norske Veritas, Oslo.Search in Google Scholar

2. Moan, T. (2009). Development of accidental collapse limit state for offshore structures. Structural Safety, 31, 124-135.10.1016/j.strusafe.2008.06.004Search in Google Scholar

3. Zaron, E., Fitzpatrick, P., Patrick J. (2015). Initial evaluations of a Gulf of Mexico/Caribbean ocean forecast system in the context of the deep-water horizontal disaster. Frontiers of Earth Science, 9, 605-636.10.1007/s11707-014-0508-xSearch in Google Scholar

4. Giovani, D., Mariana, S. (2013). Risk Based in Inspection Applied to a Semi-Submersible Platform, Offshore Technology Conference, Rio de Janeiro, Brazil.Search in Google Scholar

5. Sanders, J. L. (1987). Dugdale model for circumferential through-cracks in pipes loaded by bending. International Journal of Fracture, 34(1), 71-78.10.1007/BF00042126Search in Google Scholar

6. Fei, W., Zheng, L. (2016). Analytical solution for crack growthing of semi-submersible platform’s horizontal brace. Journal of Engineering Research. 4(1), 146-158.10.7603/s40632-016-0008-0Search in Google Scholar

7. Brighenti, R. (2000). Surface cracks in shells under different hoop stress distributions, International Journal of Pressure Vessels and Piping, 77(9), 503-509.10.1016/S0308-0161(00)00051-XSearch in Google Scholar

8. Fei, W., Zheng, L. (2017). Effects of wave loads on the strength of SEMI’s horizontal brace. Proceedings of the Institution of Civil Engineers: Maritime Engineering. 170(2), 163-172.Search in Google Scholar

9. Alexandrov, S., Zerbst, U., Schwalbe, H. (1998). Limit load solution for cracked tubular T-joints loaded in tension. Fatigue & Fracture of Engineering Materials & Structures, 21(10), 1249-1257.Search in Google Scholar

10. Lie, S., Chiew, S., Lee, C. (2004). Fatigue Performance of Cracked Tubular T Joints under Combined Loads. Journal of Structure Engineering, 130(4), 572-581.10.1061/(ASCE)0733-9445(2004)130:4(572)Search in Google Scholar

11. Maier, G. (1985). Case Histories in Offshore Engineering, Springer Vienna Publishers.10.1007/978-3-7091-2742-1Search in Google Scholar

12. Reason, J. (997). Managing the Risks of Organizational Accidents, Ashgate Publishers.Search in Google Scholar

13. Inge, L., Odd, O. (2005) Risk assessment of loss of structural integrity of a floating production platform due to gross errors, Marine Structures, 17(7), 551-573.10.1016/j.marstruc.2005.03.002Search in Google Scholar

14. Moan, T., Berge, S., Holthe, K. (1981). Analysis of the fatigue failure of the Alexander L. Kielland. ASME Winter Annual Meeting, Washington, DC.Search in Google Scholar

15. Nicholson, J.W., Weidman, S.T., Simmonds, J.G. (1983). Sanders’ energy-release rate integral for a circumferentially cracked cylindrical shell. Journal of Applied Mechanics, 50(2), 373-378.10.1115/1.3167047Search in Google Scholar

16. Sanders, J. L. (1972). Closed form solution to the semi-infinite cylindrical shell problem. Rotterdam Dam: Delft University Press.Search in Google Scholar

17. Sanders, J. L. (1980). On stress boundary conditions in shell theory. Journal of Applied Mechanics, 47(1), 202-204.10.1115/1.3153608Search in Google Scholar

eISSN:
2083-7429
Język:
Angielski
Częstotliwość wydawania:
4 razy w roku
Dziedziny czasopisma:
Engineering, Introductions and Overviews, other, Geosciences, Atmospheric Science and Climatology, Life Sciences