Otwarty dostęp

Adaptive Sliding Mode Control for Ship Autopilot with Speed Keeping

   | 18 sty 2019

Zacytuj

1. Fossen T.I.: Handbook of marine craft hydrodynamics and motion control. Wiley, West Sussex, 2011.10.1002/9781119994138Search in Google Scholar

2. Do K.D., Jiang Z.P., Pan J.: Robust adaptive path following of underactuated ships. Automatica, vol. 40, no. 6, 929, 2004.10.1016/j.automatica.2004.01.021Search in Google Scholar

3. Zhang G., Zhang X., Zheng Y.: Adaptive neural path following control for underactuated ships in fields of marine practice. Ocean Engineering, no. 104, 558, 2015.10.1016/j.oceaneng.2015.05.013Search in Google Scholar

4. Shojaei K.: Neural adaptive robust control of underactuated marine surface vehicles with input saturation. Applied Ocean Research, no. 53, 267, 2015.10.1016/j.apor.2015.09.010Search in Google Scholar

5. Li J.H., Lee P.M., Jun B.H., Lim Y.K.: Point to point navigation of underactuated ships. Automatica, vol. 44, no. 12, 3201, 2008.10.1016/j.automatica.2008.08.003Search in Google Scholar

6. Peng Z., Wang D., Chen Z., Hu X., Lan W.: Adaptive dynamic surface control for formations of autonomous surface vehicles with uncertain dynamics. IEEE Transactions on Control System Technology, vol.21, no. 2, 513, 2013.10.1109/TCST.2011.2181513Search in Google Scholar

7. Do K.D., Pan J., Jiang Z.P.: Robust adaptive control of underactuated ships on a linear course with comfort. Ocean Engineering, vol. 30, no. 7, 2201, 2003.10.1016/S0029-8018(03)00080-5Search in Google Scholar

8. Li H., Liu J., Hilton C., Liu H.: Adaptive sliding mode control for nonlinear active suspension vehicle systems using T-S fuzzy approach. IEEE Transactions on Industrial Electronics, vol. 60, no. 8, 3328, 2013.10.1109/TIE.2012.2202354Search in Google Scholar

9. Kahveci N., Ioannou P.A.: Adaptive steering control for uncertain ship dynamics and stability analysis. Automatica, vol. 49, no. 3, 685, 2013.10.1016/j.automatica.2012.11.026Search in Google Scholar

10. Lin C., Hsuen C., Chen C.: Robust adaptive backstepping control for a class of nonlinear systems using recurrent wavelet neural network [J]. Neurocomputing, no. 142, 372, 2014.10.1016/j.neucom.2014.04.023Search in Google Scholar

11. Cristi R., Papoulias F.A., Healey A.J.: Adaptive sliding mode control of autonomous underwater vehicles in the dive plane. IEEE Journal of Oceanic Engineering, vol. 15, no. 3, 152, 1990.10.1109/48.107143Search in Google Scholar

12. Do K.D., Pan J., Jiang Z.P.: Robust and adaptive path following for underactuated autonomous underwater vehicles. Ocean Engineering, vol. 31, no. 6, 1967, 2004.10.1016/j.oceaneng.2004.04.006Search in Google Scholar

13. Liu Y., Liu S., Wang N.: Fully tuned fuzzy neural network robust adaptive tracking control of unmanned under water vehicle with thruster dynamics. Neurocomputing, no. 196, 1, 2016.10.1016/j.neucom.2016.02.042Search in Google Scholar

14. Prpic-Orsic J., Faltinsen O.M.: Estimation of ship speed loss and associated CO2 emissions in a sea way. Ocean Engineering, vol. 44, no. 1, 1, 2012.10.1016/j.oceaneng.2012.01.028Search in Google Scholar

15. Arribas F.P.: Some methods to obtain the added resistance of a ship advancing in waves. Ocean Engineering, vol. 34, no. 7, 946, 2007.10.1016/j.oceaneng.2006.06.002Search in Google Scholar

16. Armstrong V.N.: Vessel optimisation for low carbon shipping. Ocean Engineering, no. 73, 195, 2013.10.1016/j.oceaneng.2013.06.018Search in Google Scholar

17. Liu Z., Jin H.: Extended radiated energy method and its application to a ship roll stabilisation control system. Ocean Engineering, vol. 72, no. 7, 25, 2013.10.1016/j.oceaneng.2013.06.009Search in Google Scholar

18. Faltinsen O.M.: Hydrodynamics of High Speed Vehicles. Cambridge University Press, Cambridge 2005.10.1017/CBO9780511546068Search in Google Scholar

19. Akinsal V.: Surface ship fuel saving with an optimized autopilot, master dissertation. Naval Postgraduate School, Monterey, 1985.Search in Google Scholar

20. Grimble M.J., Katabi M.R.: LQG design of ship steering control systems. Signal Processing for Control, Lecture Notes in Control and Information Sciences, no. 79, 387, 1986.10.1007/BFb0008200Search in Google Scholar

21. Miloh T., Pachter M.: Ship collision-avoidance and pursuitevasion differential games with speed-loss in a turn. Computers Mathematics with Application, vol. 18, no. 1, 77, 1989.10.1016/0898-1221(89)90126-0Search in Google Scholar

22. Kim S.S., Kim S.D., Kang D., Lee J., Lee S.J., Jung K.H.: Study on variation in ship’s forward speed under regular waves depending on rudder controller. International Journal of Naval Architecture and Ocean Engineering, vol. 7, no. 2, 364, 2015.10.1515/ijnaoe-2015-0025Search in Google Scholar

23. Liu Z., Jin H., Grimble M.J., Katebi R.: Ship forward speed loss minimization using nonlinear course keeping and roll motion controllers. Ocean Engineering, no. 113, 201, 2016.10.1016/j.oceaneng.2015.11.010Search in Google Scholar

24. Perez T.: Ship Motion Control: Course Keeping and Roll Reduction Using Rudder and Fins. Springer, London, 2005.Search in Google Scholar

25. Loukakis T.A., Sclavounos P.: Some extensions of the classical approach to strip theory of ship motion including the calculation of mean added forces and moments. Journal of Ship Research, vol. 22, no. 1, 1, 1978.10.5957/jsr.1978.22.1.1Search in Google Scholar

eISSN:
2083-7429
Język:
Angielski
Częstotliwość wydawania:
4 razy w roku
Dziedziny czasopisma:
Engineering, Introductions and Overviews, other, Geosciences, Atmospheric Science and Climatology, Life Sciences