Otwarty dostęp

Determining Effective Length for 40 HM-T Steel by Use of Non-Local Line Method Concept


Zacytuj

1. Adib-Ramezani H., Jeong J., Advanced volumetric method for fatigue life prediction using stress gradient effects at notch roots, Computational Materials Science, 39 (2007) 649–663.10.1016/j.commatsci.2006.08.017Search in Google Scholar

2. Carpinteri A, Spagnoli A., Vantadori S., Viappiani D., A multiaxial criterion for notch high-cycle fatigue using a critical-point method, Engineering Fracture Mechanics 75 (2008) 1864-1874.10.1016/j.engfracmech.2006.11.002Open DOISearch in Google Scholar

3. Cichański A., Influence of finite element order on SCF precision for U-shaped notches in flat bars under tension, Proceedings of 17th International Conference on Engineering Mechanics 2011, Svratka-Czech Republic, (2011) 79-82.Search in Google Scholar

4. Cichański A., The influence of mesh morphology on the SCF in 2D FEM analysis of flat bars with opposite V-notch under tension, Proceedings of 22nd International Conference on Engineering Mechanics 2016, Svratka-Czech Republic, (2016) 110-113.Search in Google Scholar

5. Cichański A., Mesh size dependency on notch radius for FEM analysis of notched round bars under tension, AIP Conference Proceedings 1822, 020004 (2017).10.1063/1.4977678Search in Google Scholar

6. De-Guang Shang, Da-Kang Wang, Ming Li, Wei-Xing Yao, Local stress-strain field intensity approach to fatigue life prediction under random cyclic loading, International Journal of Fatigue, 23 (2001) 903-910.10.1016/S0142-1123(01)00051-2Open DOISearch in Google Scholar

7. Irwin G., Analysis of stresses and strains near the end of a crack traversing a plate, Journal of Applied Mechanics, 24 (1957) 361–364.10.1115/1.4011547Search in Google Scholar

8. Karolczuk A., Blacha Ł., Fatigue life estimation under variable amplitude bending using the non-local damage parameter and multisurface plasticity model, International Journal of Fatigue 33 (2011) 1376–1383.10.1016/j.ijfatigue.2011.05.003Search in Google Scholar

9. Kluger K., Łagoda T., Fatigue life estimation for selected materials in multiaxial stress states with mean stress, Journal of theoretical and applied mechanics, 54 (2016) 385-396.10.15632/jtam-pl.54.2.385Search in Google Scholar

10. Krzyżak D., Łagoda T., Fatigue life estimation of notched elements with use of non-local volumetric method, International Journal of Fatigue, Vol. 61 (2014) 59-66.10.1016/j.ijfatigue.2013.12.004Search in Google Scholar

11. Krzyżak D., Robak G., Łagoda T., Determining fatigue life of bent and tensioned elements with a notch, with use of fictitious radius, Fatigue and Fracture of Engineering Materials and Structures, 38 (2015) 693-699.10.1111/ffe.12276Search in Google Scholar

12. Krzyżak D., Robak, G., Łagoda, T., Non-local line method with weight function and critical plane approaches used for fatigue life calculation of notched elements, Fatigue and Fracture of Engineering Materials and Structures Vol. 40, 2017.10.1111/ffe.12478Search in Google Scholar

13. Łagoda, T., Robak, G. and Słowik, J., Fatigue life of steel notched elements including the complex stress state. Materials and Design, 51 (2013) 935–942.10.1016/j.matdes.2013.04.087Search in Google Scholar

14. Neuber H., Über die Berücksichtigung der Spannungskonzentration bei Festigkeitsberechnungen, Konstruktion im Maschinen-Apparatte und Gerätebau, Heft 7 (1968) 245-251.Search in Google Scholar

15. Pawliczek R., Kluger K., Influence of irregularity coefficient of loading on calculated fatigue life, Journal of Theoretical and Applied mechanics, 51 No. 4 (2013).Search in Google Scholar

16. Pluvinage G., Fracture and fatigue emanating from stress concentrators, Kluwer, Dordrecht (2003).Search in Google Scholar

17. Radaj D, Vormwand M., Advanced methods of fatigue assessment. Springer Verlag Berlin Heidelberg (2013).10.1007/978-3-642-30740-9Search in Google Scholar

18. Radaj D., Lazzarin P., Berto F., Generalised Neuber concept of fictitious notch rounding, International Journal of Fatigue, Vol. 51 (2013) 105-115.10.1016/j.ijfatigue.2013.01.005Open DOISearch in Google Scholar

19. Ritchie RO., Knott JF., Rice JR., On the relationship between critical tensile stress and fracture toughness in mild steel, Journal of the Mechanics and Physics of Solids, 21 (1973) 359–410.10.1016/0022-5096(73)90008-2Search in Google Scholar

20. Robak G., Szymaniec M., Łagoda T., The fictitious radius as a tool for fatigue life estimation of notched elements, Materials Science Forum, 726 (2012) 27-32.10.4028/www.scientific.net/MSF.726.27Search in Google Scholar

21. Rozumek D., Marciniak Z., Fatigue properties of notched specimens made of FeP04 steel. Materials Science, 47(4) (2012) 462-469.10.1007/s11003-012-9417-xSearch in Google Scholar

22. Seweryn A., Brittle fracture criterion for structures with sharp notches, Engineering Fracture Mechanics, 47 (4) (1994) 673-681.10.1016/0013-7944(94)90158-9Open DOISearch in Google Scholar

23. Sonsino C.M., Łagoda T., Assessment of multiaxial fatigue behaviour of welded joints under combined bending and torsion by application of a fictitious notch radius, International Journal of Fatigue, 26 (2004) 265-279.10.1016/S0142-1123(03)00143-9Open DOISearch in Google Scholar

24. Szala G. Comments on linear summation hypothesis of fatigue failures, Polish Maritime Research 3(83) Vol. 21, (2014)10.2478/pomr-2014-0033Search in Google Scholar

25. Taylor D., Predicting the fracture strength of ceramic materials using the theory of critical distances, Engineering Fracture Mechanics, 71 (2004) 2407-2416.10.1016/j.engfracmech.2004.01.002Search in Google Scholar

26. Yao W., Ye B., Zheng L. A verification of the assumption of anti-fatigue design, International Journal of Fatigue, 23 (2001) 271-27710.1016/S0142-1123(00)00083-9Open DOISearch in Google Scholar

eISSN:
2083-7429
Język:
Angielski
Częstotliwość wydawania:
4 razy w roku
Dziedziny czasopisma:
Engineering, Introductions and Overviews, other, Geosciences, Atmospheric Science and Climatology, Life Sciences