Otwarty dostęp

Multi-Objective Weather Routing of Sailboats Considering Wave Resistance


Zacytuj

1. Bijlsma, S.J.: Minimal Time Route Computation for Ships with Pre-Specified Voyage Fuel Consumption, J. Navig. 61 (2008) 723–733.10.1017/S037346330800492XSearch in Google Scholar

2. Dębski, R.: An adaptive multi-spline refinement algorithm in simulation based sailboat trajectory optimization using onboard multi-core computer systems, Int. J. Appl. Math. Comput. Sci. 26 (2016) 351–365.10.1515/amcs-2016-0025Open DOISearch in Google Scholar

3. Gao, M., G. Shi, W. Li, Y. Wang, D. Liu: ScienceDirect An improved genetic algorithm for island route planning, Procedia Eng. 174 (2017) 433–441.10.1016/j.proeng.2017.01.163Search in Google Scholar

4. Gerritsma, J., J.A. Keuning, R. Onnink: The Delft Systematic Yacht Hull Series II Experiments, 1990.Search in Google Scholar

5. James, R.W.: APPLICATION OF WAVE FORECASTS TO MARINE NAVIGATION, (1957).Search in Google Scholar

6. Krata, P., J. Szlapczynska: Ship weather routing optimization with dynamic constraints based on reliable synchronous roll prediction, Ocean Eng. 150 (2018) 124–137.10.1016/j.oceaneng.2017.12.049Search in Google Scholar

7. Krata, P., J. Szłapczyńska: Weather Hazard Avoidance in Modeling Safety of Motor-Driven Ship for Multicriteria Weather Routing, TransNav. 6 (2012) 71–78.10.1201/b11344-27Search in Google Scholar

8. Krata, P., W. Wawrzyński: On ship roll resonance frequency, Ocean Eng. 126 (2016) 92–114.10.1016/j.oceaneng.2016.08.026Search in Google Scholar

9. Krata, P., W. Wawrzyński: Prediction of Ship Resonant Rolling - Related Dangerous Zones with Regard to the Equivalent Metacentric Height Governing Natural Frequency of Roll, TransNav, Int. J. Mar. Navig. Saf. Sea Transp. 11 (2017).10.12716/1001.11.04.05Search in Google Scholar

10. Langbein, J., R. Stelzer, T. Frühwirth: A Rule-Based Approach to Long-Term Routing for Autonomous Sailboats, in: Robot. Sail., Springer Berlin Heidelberg, Berlin, Heidelberg, 2011: pp. 195–204.10.1007/978-3-642-22836-0_14Search in Google Scholar

11. Lazarowska, A.: Multi-criteria ACO-based Algorithm for Ships Trajectory Planning, TransNav, Int. J. Mar. Navig. Saf. Sea Transp. 11 (2017) 31–36.10.12716/1001.11.01.02Search in Google Scholar

12. Lisowski, J.: ScienceDirect Computational intelligence methods of a safe ship control, Procedia - Procedia Comput. Sci. 35 (2014) 634–643.10.1016/j.procs.2014.08.145Open DOISearch in Google Scholar

13. Lisowski, J.: THE SENSITIVITY OF STATE DIFFERENTIAL GAME VESSEL TRAFFIC MODEL, POLISH Marit. Res. 2 (2016) 14–18.10.1515/pomr-2016-0015Search in Google Scholar

14. Mannarini, G., G. Coppini, P. Oddo, N. Pinardi: A Prototype of Ship Routing Decision Support System for an Operational Oceanographic Service, TransNav, Int. J. Mar. Navig. Saf. Sea Transp. 7 (2013) 53–59.10.12716/1001.07.01.06Search in Google Scholar

15. Naus, K., M. Wąż: The idea of using the A* algorithm for route planning an unmanned vehicle “Edredon,” Zesz. Nauk. / Akad. Morska W Szczecinie. (2013) 143-147.Search in Google Scholar

16. Neumann, T.: Method of Path Selection in the Graph - Case Study, TransNav, Int. J. Mar. Navig. Saf. Sea Transp. 8 (2014) 557–562.10.12716/1001.08.04.10Search in Google Scholar

17. Niklas, K., J. Kozak: Experimental investigation of Steel-Concrete-Polymer composite barrier for the ship internal tank construction, Ocean Eng. 111 (2016) 449–460.10.1016/j.oceaneng.2015.11.030Search in Google Scholar

18. Philpott, A., A. Mason: Optimising yacht routes under uncertainty, Proc. 15th Chesap. Sail. Yacht Symp. Annapolis, MD. (2001).10.5957/CSYS-2001-009Search in Google Scholar

19. Philpott, a B., I.M. Viola, R.G.J. Flay: Optimal Yacht Routing Tactics, Innovsail. (2013) 231–237.Search in Google Scholar

20. Salvesen, N., E. Tuck, O. Faltinsen: Vessel motions and sea loads, Trans. SNAME. 78 (1970) 250–287.Search in Google Scholar

21. Specht, C., A. Weintrit, M. Specht, Y. Wo: A History of Maritime Radio-Navigation Positioning Systems used in Poland, (2017).10.1017/S0373463315000879Search in Google Scholar

22. Stelzer, R., K. Jafarmadar: The robotic sailing boat asv roboat as a maritime research platform, Proc. 22nd Int. HISWA Symp. Yacht Des. Yacht Constr. (2012).Search in Google Scholar

23. Szłapczynska, J.: Multi-objective Weather Routing with Customised Criteria and Constraints, J. Navig. 68 (2015) 338–354.10.1017/S0373463314000691Search in Google Scholar

24. Szłapczyński, R., M. Życzkowski: Multi-objective weather routing of sailing vessels, Polish Marit. Res. 24 (2017) 10–17.10.1515/pomr-2017-0130Search in Google Scholar

25. Tagliaferri, F., I.M. Viola: A real-time strategy-decision program for sailing yacht races, (2017).10.1016/j.oceaneng.2017.02.026Search in Google Scholar

26. Wawrzyński, W., P. Krata: METHOD FOR SHIP’S ROLLING PERIOD PREDICTION WITH REGARD TO NON-LINEARITY OF GZ CURVE, J. Theor. Appl. Mech. 54 (2016) 1329–1343.10.15632/jtam-pl.54.4.1329Search in Google Scholar

27. Weintrit, A., P. Kopacz: Computational Algorithms Implemented in Marine Navigation Electronic Systems, in: Springer, Berlin, Heidelberg, 2012: pp. 148–158.10.1007/978-3-642-34050-5_18Search in Google Scholar

28. Wiśniewski, B.: Programowanie tras statków na oceanach, Zesz. Nauk. / Akad. Morska W Szczecinie. 29 (2012) 164–173.Search in Google Scholar

29. Życzkowski, M.: Sailing Vessel Routing Considering Safety Zone and Penalty Time for Altering Course, TransNav, Int. J. Mar. Navig. Saf. Sea Transp. 11 (2017) 49–54.10.12716/1001.11.02.04Search in Google Scholar

30. MAXSURF Design & Analysis Software - Home, (2017).Search in Google Scholar

31. ORC - World Leader in Rating Technology, (2017).Search in Google Scholar

eISSN:
2083-7429
Język:
Angielski
Częstotliwość wydawania:
4 razy w roku
Dziedziny czasopisma:
Engineering, Introductions and Overviews, other, Geosciences, Atmospheric Science and Climatology, Life Sciences