Otwarty dostęp

Comparative Analysis on Crop Yield Forecasting using Machine Learning Techniques

, , , , , ,  oraz   
31 gru 2024

Zacytuj
Pobierz okładkę

n.d. Artificial Neural Network Tutorial. javaTpoint. https://www.javatpoint.com/artificial-neural-network. Search in Google Scholar

Batool, D., Shahbaz, M., Shahzad Asif, H., Shaukat, K., Alam, T.M., Hameed, I.A., ... & Luo, S. (2022). A hybrid approach to tea crop yield prediction using simulation models and machine learning. Plants, 11(15), 1925. DOI: 10.3390/plants11151925 Search in Google Scholar

Bodapati, N., Himavaishnavi, J., Rohitha, V., Jagadeeswari, D.L., & Bhavana, P. (2022). Analyzing crop yield using machine learning. In 2022 International Conference on Electronics and Renewable Systems (ICEARS), Tuticorin, India, (pp. 1-8). IEEE. DOI: 10.1109/ICEARS53579.2022.9752242. Search in Google Scholar

Bonthu, H. (2021). Analytics Vidhya. 21 May. https://www.analyticsvidhya.com/blog/2021/05/detecting-and-treating-outliers-treating-the-oddone-out/. Search in Google Scholar

Budu, E. (2022). Random Forest Vs. Extremely Randomized Trees. Baeldung. 1 August. https://www.baeldung.com/cs/random-forest-vs-extremely-randomized-trees. Search in Google Scholar

Chandraprabha, M., & Dhanaraj, R.K. (2021). Soil based prediction for crop yield using predictive analytics. In 2021 3rd International Conference on Advances in Computing, Communication Control and Networking (ICAC3N), Greater Noida, India, (pp. 265-270). IEEE. DOI: 10.1109/ICAC3N53548.2021.9725758. Search in Google Scholar

Chaya (2020). Random Forest Regression. Level Up Coding. 9 June. https://levelup.gitconnected.com/random-forest-regression-209c0f354c84. Search in Google Scholar

Dahikar, S.S., & Rode, S.V. (2014). Agricultural crop yield prediction using artificial neural network approach. International Journal of Innovative Research in Electrical, Electronics, Instrumentation and Control Engineering, 2(1), 683-686. DOI: 7c68a32212c1f86f535f4c1658ff68399d0a9ddd. Search in Google Scholar

Dharwadkar, N.V., Kalmani, V.H., & Thapa, V. (2023). Crop yield prediction using deep learning algorithm based on CNN-LSTM with attention layer and skip connection. Preprint. DOI: 10.21203/rs.3.rs-3118781/v1. Search in Google Scholar

Elavarasan, D., & Vincent, P.D.R. (2021). A reinforced random forest model for enhanced crop yield prediction by integrating agrarian parameters. Journal of Ambient Intelligence and Humanized Computing, 12(11), 10009-10022. DOI: 10.1007/s12652-020-02752-y. Search in Google Scholar

Feng, P., Wang, B., Li Liu, D., Waters, C., Xiao, D., Shi, L., & Yu, Q. (2020). Dynamic wheat yield forecasts are improved by a hybrid approach using a biophysical model and machine learning technique. Agricultural and Forest Meteorology, 285, 107922. DOI: 10.1016/j.agrformet.2020.107922. Search in Google Scholar

Fritz, S., See, L., Bayas, J. C. L., Waldner, F., Jacques, D. C., Becker-Reshef, I., ... & McCallum, I. (2019). A comparison of global agricultural monitoring systems and current gaps. Agricultural Systems, 168, 258-272. DOI: 10.1016/j.agsy.2018.05.010. Search in Google Scholar

Geurts, P., Ernst, D., & Wehenkel, L. (2006). Extremely randomized trees. Machine Learning, 63, 3-42. DOI: 10.1007/s10994-006-6226-1. Search in Google Scholar

Ghai, D., Tripathi, S. L., Saxena, S., Chanda, M., & Alazab, M. (Eds.). (2022). Machine Learning Algorithms for Signal and Image Processing. John Wiley & Sons. DOI: 10.1002/9781119861850. Search in Google Scholar

Gopal, P.M., & Bhargavi, R. (2019). A novel approach for efficient crop yield prediction. Computers and Electronics in Agriculture, 165, 104968. DOI: 10.1016/j.compag.2019.104968. Search in Google Scholar

Huilgol, P. (2020). Feature transformation and scaling techniques to boost your model performance. https://www.analyticsvidhya.com/blog/2020/07/types-of-feature-transformation-and-scaling/. Search in Google Scholar

Iniyan, S., Varma, V.A., & Naidu, C.T. (2023). Crop yield prediction using machine learning techniques. Advances in Engineering Software, 175, 103326. DOI: 10.1016/j.advengsoft.2022.103326. Search in Google Scholar

Jeong, J.H., Resop, J.P., Mueller, N.D., Fleisher, D.H., Yun, K., Butler, E.E., ... & Kim, S.H. (2016). Random forests for global and regional crop yield predictions. PloS one, 11(6), e0156571. DOI: 10.1371/journal.pone.0156571. Search in Google Scholar

Jhajharia, K., Mathur, P., Jain, S., & Nijhawan, S. (2023). Crop yield prediction using machine learning and deep learning techniques. Procedia Computer Science, 218, 406-417. DOI: 10.1016/j.procs.2023.01.023. Search in Google Scholar

Kanyutu, K. (2023). Exploratory Data Analysis Ultimate Guide. DEV Community. 26 February. https://dev.to/kim_kanyutu/exploratory-data-analysis-ultimate-guide-35e1. Search in Google Scholar

Khaki, S., & Wang, L. (2019). Crop yield prediction using deep neural networks. Frontiers in Plant Science, 10, 452963. DOI: 10.3389/fpls.2019.00621. Search in Google Scholar

Khaki, S., Wang, L., & Archontoulis, S.V. (2020). A CNN-RNN framework for crop yield prediction. Frontiers in Plant Science, 10, 492736. DOI: 10.3389/fpls.2019.01750. Search in Google Scholar

Kim, N., Ha, K.J., Park, N.W., Cho, J., Hong, S., & Lee, Y.W. (2019). A comparison between major artificial intelligence models for crop yield prediction: Case study of the midwestern United States, 2006–2015. ISPRS International Journal of Geo-Information, 8(5), 240. DOI: 10.3390/ijgi8050240. Search in Google Scholar

Kumar, Y.J.N., Spandana, V., Vaishnavi, V.S., Neha, K., & Devi, V.G. R. R. (2020). Supervised machine learning approach for crop yield prediction in agriculture sector. In 2020 5th International Conference on Communication and Electronics Systems (ICCES), Coimbatore, India, (pp. 736-741). IEEE. DOI: 10.1109/ICCES48766.2020.9137868. Search in Google Scholar

Kuwata, K., & Shibasaki, R. (2016). Estimating corn yield in the United States with MODIS EVI and machine learning methods. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 3, 131-136. DOI: 10.5194/isprsannals-III-8-131-2016. Search in Google Scholar

Mishra, S., Mishra, D., & Santra, G. H. (2016). Applications of machine learning techniques in agricultural crop production: a review paper. Indian Journal of Science and Technology, 9(38), 1-14. DOI: 10.17485/ijst/2016/v9i38/95032. Search in Google Scholar

Nigam, A., Garg, S., Agrawal, A., & Agrawal, P. (2019). Crop yield prediction using machine learning algorithms. In 2019 5th International Conference on Image Information Processing (ICIIP), Shimla, India, (pp. 125-130). IEEE. DOI: 10.1109/ICIIP47207.2019.8985951. Search in Google Scholar

Nithya, V., Josephine, M.S., & Jeyabalaraja, V. (2023). IoT-based crop yield prediction system in Indian sub-continent using machine learning techniques. Remote Sensing in Earth Systems Sciences, 6(3), 156-166. DOI: 10.1007/s41976-023-00097-6. Search in Google Scholar

Oikonomidis, A., Catal, C., & Kassahun, A. (2022). Hybrid deep learning-based models for crop yield prediction. Applied Artificial Intelligence, 36(1), 2031822. DOI: 10.1080/08839514.2022.2031823. Search in Google Scholar

Pandith, V., Kour, H., Singh, S., Manhas, J., & Sharma, V. (2020). Performance evaluation of machine learning techniques for mustard crop yield prediction from soil analysis. Journal of Scientific Research, 64(2), 394-398. DOI: 10.37398/JSR.2020.640254. Search in Google Scholar

Patel, K., & Patel, H.B. (2021). A comparative analysis of supervised machine learning algorithm for agriculture crop prediction. In 2021 4th International Conference on Electrical, Computer and Communication Technologies (ICECCT), Erode, India, (pp. 1-5). IEEE. DOI: 10.1109/ICECCT52121.2021.9616731. Search in Google Scholar

Patel, R. n.d. Crop Yield Prediction Dataset. Kaggle. https://www.kaggle.com/datasets/patelris/crop-yield-prediction-dataset. Search in Google Scholar

Satir, O., & Berberoglu, S. (2016). Crop yield prediction under soil salinity using satellite derived vegetation indices. Field Crops Research, 192, 134-143. DOI: 10.1016/j.fcr.2016.04.028. Search in Google Scholar

Schmidhuber, J. (2015). Deep learning in neural networks: An overview. Neural networks, 61, 85-117. DOI: 10.1016/j.neunet.2014.09.003. Search in Google Scholar

n.d. Scikit learn. https://scikitlearn.org/stable/modules/generated/sklearn.metrics.mean_absolute_error.html#sklearn.metrics.mean_absolute_error. Search in Google Scholar

n.d. Scikit Learn. https://scikit-learn.org/stable/modules/generated/sklearn.metrics.mean_squared_error. Search in Google Scholar

n.d. Scikit Learn. https://scikit-learn.org/stable/modules/generated/sklearn.metrics.r2_score.html#sklearn.metrics.r2_score. Search in Google Scholar

Segal, M.R. (2004). Machine Learning Benchmarks and Random Forest Regression. UCSF: Center for Bioinformatics and Molecular Biostatistics. Retrieved from https://escholarship.org/uc/item/35x3v9t4. Search in Google Scholar

Seldon. (2021). Machine Learning Regression. 29 October. https://www.seldon.io/machine-learning-regression-explained#:~:text=Regression%20is%20a%20technique%20for,used%20to%20predict%20continuous%20outcomes. Search in Google Scholar

Singh, G. (2021). Introduction to Artificial Neural Networks. Analytics Vidhya. 6 September. https://www.analyticsvidhya.com/blog/2021/09/introduction-to-artificial-neural-networks/. Search in Google Scholar

Sreerama, A.S., & Sagar, B.M. (2020). A machine learning approach to crop yield prediction. International Research Journal of Engineering and Technology (IRJET) 07 (05): 4, 6616-6619. Search in Google Scholar

Suresh, N., Ramesh, N.V.K., Inthiyaz, S., Priya, P.P., Nagasowmika, K., Kumar, K.V.H., ... & Reddy, B.N. K. (2021). Crop yield prediction using random forest algorithm. In 2021 7th International Conference on Advanced Computing and Communication Systems (ICACCS), Coimbatore, India, (pp. 279-282). IEEE. DOI: 10.1109/ICACCS51430.2021.9441871. Search in Google Scholar

Swain, D., Lakum, S., Patel, S., & Patro, P. (2024). An Efficient Crop Yield Prediction System Using Machine Learning. EAI Endorsed Transactions on Internet of Things, 10, 1-5. DOI: 10.4108/eetiot.5333. Search in Google Scholar

Thankachan, K. n.d. (2022). What? When? How? ExtraTrees Classifier. Towards Data Science. https://towardsdatascience.com/what-when-how-extratrees-classifier-c939f905851c. Search in Google Scholar

Venugopal, A., Aparna, S., Mani, J., Mathew, R., & Williams, V. (2021). Crop yield prediction using machine learning algorithms. International Journal of Engineering Research & Technology (IJERT), 9(13), 87-91. DOI: 10.17577/IJERTCONV9IS13019. Search in Google Scholar

Język:
Angielski
Częstotliwość wydawania:
2 razy w roku
Dziedziny czasopisma:
Nauki biologiczne, Biotechnologia, Nauka o roślinach, Ekologia