Otwarty dostęp

Sound Absorption Properties of the Patented Wood, Lightweight Stabilised Blockboard


Zacytuj

Arzola-Villegas, X., Báez, C., Lakes, R., Stone, D.S., O’Dell, J., Shevchenko, P., Xiao, X., De Carlo, F. & Jakes, J.E. (2023). Convolutional Neural Network for Segmenting Micro-X-ray Computed Tomography Images of Wood Cellular Structures. Applied Sciences, 13, 8146-8161. DOI: 10.3390/app13148146. Search in Google Scholar

Bies, A.D. & Hansen, C.H. (2009). Engineering Noise Control: Theory and Practice. CRC Press: London. Search in Google Scholar

Bies, D.A., Hansen C. & Howard C. (2017). Engineering Noise Control, Fifth Edition. CRC Press: Boca Raton. Search in Google Scholar

Cao, L., Fu, Q., Si, Y., Ding, B. & Yu, J. (2018). Porous materials for sound absorption. Composites Communications, 10, 25–35. DOI: 10.1016/j.coco.2018.05.001. Search in Google Scholar

Dukarska, D., Walkiewicz, J., Derkowski, A. & Mirski, R. (2022). Properties of Rigid Polyurethane Foam Filled with Sawdust from Primary Wood Processing. Materials, 15, 5361-5379. DOI: 10.3390/ma15155361. Search in Google Scholar

European Committee for Standardization. (1993). European standard: Wood-based panels – Determination of moisture content. EN 322. Brussels. Search in Google Scholar

European Committee for Standardization. (1993). European standard: Wood-based panels – Determination of density. EN 323. Brussels. Search in Google Scholar

Guiman, M.V., Stanciu, M.D., Roșca, I.C., Georgescu, S.V., Năstac, S.M. & Câmpean, M. (2023). Influence of the Grain Orientation of Wood upon Its Sound Absorption Properties. Materials, 16, 5998-6014. DOI: 10.3390/ma16175998. Search in Google Scholar

International Organization for Standardization. (2000). International standard: Acoustics– Sound absorbers in buildings–Sound absorption parameters ISO 11654. Geneva. Search in Google Scholar

International Organization for Standardization. (2023). International standard: Acoustics Determination of acoustic properties in impedance tubes Part 2: Two-microphone technique for normal sound absorption coefficient and normal surface impedance. ISO 10534-2. Geneva. Search in Google Scholar

Cabinet of Ministers. (2015). Regulations Regarding Latvian Construction Standard. Building Acoustics. LBN 016-15. Riga. Search in Google Scholar

Long M. (2006). Architectural Acoustics, 1st edition. Academic Press: United Kingdom. Search in Google Scholar

Na, Y., Jeff, L., Johni, C. & Gilsoo, C. (2007). Sound Absorption Coefficients of Micro-Fiber Fabrics by Reverberation Room Method. Textile Research Journal, 77, 330-335. DOI: 10.1177/0040517507078743. Search in Google Scholar

Roziņš, R., Vašuks, M., & Vašuks P. (2014a). Latvian Patent No. 14927A. Riga: Patent Office. Search in Google Scholar

Roziņš, R., Vašuks, M., & Vašuks P. (2014b). Latvian Patent No. 14929A. Riga: Patent Office. Search in Google Scholar

Roziņš, R., Iejavs, J., Jakovļevs, V. & Spulle U. (2020). The properties of lightweight stabilised blockboard panels. Drewno, 63/206, 103-119. DOI: 10.12841/wood.1644-3985.334.02. Search in Google Scholar

Smardzewski, J., Kamisiński, T., Dziurka, D., Mirski, R., Majewski, A., Flach, A., & Pilch, A. (2015). Sound absorption of wood-based materials. Holzforschung, 69, 431-440. DOI: 10.1515/hf-2014-0114. Search in Google Scholar

Strazdiņš M. (2011). Study of Cellular Wood Panel Material Sound Absorption. Master Thesis, Jelgava, Latvia University of Agriculture, Forest Faculty. Search in Google Scholar

Thomas D. (2014). Handbook of Acoustics. 2nd edition.‎ Springer-Verlag Berlin Heidelberg: Berlin. Search in Google Scholar

Tiuc, A.E., Borlea, S.I., Nemeș, O., Vermeșan, H., Vasile, O., Popa, F. & Pințoi, R. (2022). New Composite Materials Made from Rigid/Flexible Polyurethane Foams with Fir Sawdust: Acoustic and Thermal Behavior. Polymers, 14, 3643-3464. DOI: 10.3390/polym14173643. Search in Google Scholar

Troja Ltd. (2023). Wall and ceiling panels. Retrieved November 21, 2023, from https://troja.lv/en/products/wall-and-ceiling-panels Search in Google Scholar

Wang, D., Peng, L., Zhu, G., Fu, F., Zhou, Y. & Song, B. (2014). Improving the Sound Absorption Capacity of Wood by Microwave Treatment. BioResources, 9(4), 7504-7518. DOI: 10.15376/biores.9.4.7504-7518. Search in Google Scholar

Veits, I. (2006). Metodiski norādījumi būvakustikā. Latvijas akustiķu apvienība. (Methodical instructions in building acoustics. Latvian Acoustics Association) (in Latvian) Search in Google Scholar

Yang, T., Hu, L., Xiong, X., Petrů, M., Noman, M.T., Mishra, R. & Militký, J. (2020). Sound Absorption Properties of Natural Fibers: A Review. Sustainability, 12, 8477-8502. DOI: 10.3390/su12208477. Search in Google Scholar

Yoshikawa, S. & Waltham, C. (2014). Woods for Wooden Musical Instruments. Proceedings of the International Symposium on Musical Acoustics, July 7-12, 2014 (281-286), Le Mans, French Acoustical Society. DOI: 10.13140/2.1.5067.1369. Search in Google Scholar

Zaharia, S.M., Pop, M.A., Cosnita, M., Croitoru, C., Matei, S. & Spîrchez, C. (2023). Sound Absorption Performance and Mechanical Properties of the 3D-Printed Bio-Degradable Panels. Polymers, 15, 3695-3715. DOI: 10.3390/polym15183695. Search in Google Scholar

Zhang, J., Shen, Y., Jiang, B. & Li, Y. (2018). Sound Absorption Characterization of Natural Materials and Sandwich Structure Composites. Aerospace, 5, 75-88. DOI: 10.3390/aerospace5030075. Search in Google Scholar

eISSN:
2256-0939
Język:
Angielski
Częstotliwość wydawania:
2 razy w roku
Dziedziny czasopisma:
Life Sciences, Biotechnology, Ecology, Plant Science