Otwarty dostęp

Automated patient centering of computed tomography images and its implementation to evaluate clinical practices in three hospitals in Indonesia


Zacytuj

1. Shahi V, Brinjikji W, Cloft HJ, Thomas KB. Trends in CT utilization for pediatric fall patients in US emergency departments. Acad Radiol. 2015;22(7):898-903. https://doi.org/10.1016/j.acra.2015.02.016 10.1016/j.acra.2015.02.01625957501 Search in Google Scholar

2. Brinjikji W, Kallmes DF, Cloft HJ. Rising utilization of CT in adult fall patients. Am J Roentgenol. 2015;204(3):558-562. https://doi.org/10.2214/AJR.14.13107 10.2214/AJR.14.1310725714285 Search in Google Scholar

3. Goldman LW. Principles of CT: Radiation dose and image quality. J Nucl Med Technol. 2007;35:213-225. https://doi.org/10.2967/jnmt.106.037846 10.2967/jnmt.106.03784618006597 Search in Google Scholar

4. Hooper T, Eccles G, Milliken T, Mathieu-Burry JR, Reed W. Dose reduction in CT imaging for facial bone trauma in adults: A narrative literature review. J Med Rad Sci. 2019;66(2):122-132. https://doi.org/10.1002/jmrs.319 10.1002/jmrs.319654547630706691 Search in Google Scholar

5. Anam C, Haryanto F, Widita R, Arif I, Dougherty G. The evaluation of the effective diameter (Deff) calculation and its impact on the size-specific dose estimate (SSDE). Atom Indonesia. 2017;43(1):55-60. https://doi.org/10.17146/aij.2017.617 10.17146/aij.2017.617 Search in Google Scholar

6. Yabuuchi H, Kamitani T, Sagiyama K, et al. Clinical application of radiation dose reduction for head and neck CT. Eur J Radiol. 2018;107:209-215. https://doi.org/10.1016/j.ejrad.2018.08.021 10.1016/j.ejrad.2018.08.02130177405 Search in Google Scholar

7. Kataria B, Nilsson Althén J, Smedby Ö, Persson A, Sökjer H, Sandborg M. Image quality and potential dose reduction using advanced modeled iterative reconstruction (ADMIRE) in abdominal CT-A review. Radiat Prot Dosimetry. 2021;195(3-4):177-187. https://doi.org/10.1093/rpd/ncab020 10.1093/rpd/ncab020850745533778892 Search in Google Scholar

8. Kataria B, Sandborg M, Althén JN. Implications of patient centering on organ dose in computed tomography. Radiat Prot Dosimetry. 2016;169(1-4):130-135. https://doi.org/10.1093/rpd/ncv527 10.1093/rpd/ncv52726743256 Search in Google Scholar

9. Habibzadeh MA, Ay MR, Kamali Asl AR, Ghadiri H, Zaidi H. Impact of mis-centering on patient dose and image noise in x-ray CT imaging: Phantom and clinical studies. Phys Med. 2012;28(3):191-199. https://doi.org/10.1016/j.ejmp.2011.06.002 10.1016/j.ejmp.2011.06.00221741870 Search in Google Scholar

10. Furukawa Y, Matsubara K, Tsutsumi Y. A comparison of automatic and manual compensation methods for the calculation of tube currents during off centered patient positioning with a noise based automatic exposure control system in computed tomography. Phys Eng Sci Med. 2021;44(3):823-832. https://doi.org/10.1007/s13246-021-01033-y 10.1007/s13246-021-01033-y34297309 Search in Google Scholar

11. Euler A, Saltybaeva N, Alkadhi H. How patient off-centering impacts organ dose and image noise in pediatric head and thoracoabdominal CT. Euro Radiol. 2019;29(12):6790-6793. https://doi.org/10.1007/s00330-019-06330-5 10.1007/s00330-019-06330-531278575 Search in Google Scholar

12. Sabarudin A, Mustafa Z, Nassir KM, Hamid HA, Sun Z. Radiation dose reduction in thoracic and abdominal-pelvic CT using tube current modulation: a phantom study. J Appl Clin Med Phys. 2014;16(1):319-328. https://doi.org/10.1120/jacmp.v16i1.5135 10.1120/jacmp.v16i1.5135568999525679153 Search in Google Scholar

13. Greffier, J, Frandon, J, de Forges H, et al. Impact of additional mattresses in emergency CT on the automated patient centering proposed by a 3D camera: a phantom study. Sci Rep. 2021;11:13191. https://doi.org/10.1038/s41598-021-92637-7 10.1038/s41598-021-92637-7822234434162954 Search in Google Scholar

14. Cheng PM. Patient vertical centering and correlation with radiation output in adult abdominopelvic CT. J Digit Imaging. 2016;29(4):428-437. https://doi.org/10.1007/s10278-016-9861-5 10.1007/s10278-016-9861-5494238826810981 Search in Google Scholar

15. Sookpeng S, Martin CJ, Kadman B. Eye lens radiation dose to mis-centering patients and health-care staff from head computed tomography. J Rad Nu. 2019;38:193-199. https://doi.org/10.1016/j.jradnu.2019.05.002 10.1016/j.jradnu.2019.05.002 Search in Google Scholar

16. Anam C, Fujibuchi T, Toyoda T, et al. The impact of head miscentering on the eye lens dose in CT scanning: Phantoms study. J Phys: Conf Ser. 2019;1204:012022. https://doi.org/10.1088/1742-6596/1204/1/012022 10.1088/1742-6596/1204/1/012022 Search in Google Scholar

17. Booij R, van Straten M, Wimmer A, Budde RPJ. Automated patient positioning in CT using a 3D camera for body contour detection: accuracy in pediatric patients. Eur Radiol. 2021;31(1):131-138. https://doi.org/10.1007/s00330-020-07097-w 10.1007/s00330-020-07097-w775562732749591 Search in Google Scholar

18. Toth T, Ge Z, Daly MP. The influence of patient centering on CT dose and image noise. Med Phys. 2007;24(7):3093-3101. https://doi.org/10.1118/1.2748113 10.1118/1.274811317822016 Search in Google Scholar

19. Li J, Udayasankar UK, Toth TL, Seamans J, Small WC, Kalra MK. Automatic patient centering for MDCT: Effect on radiation dose. Am J Roentgenol. 2007;188:547-552. https://doi.org/10.2214/AJR.06.0370 10.2214/AJR.06.037017242267 Search in Google Scholar

20. ICRP. Assessing dose of the representative person for the purpose of the radiation protection of the public. ICRP Publication 101a. Ann. ICRP. 2006;36.10.1016/S0146-6453(06)00061-3 Search in Google Scholar

21. Anam C, Naufal A, Fujibuchi T, Matsubara K, Dougherty G. Automated development of the contrast-detail curve based on statistical low-contrast detectability in CT images. J Appl Clin Med Phys. 2022;23:e13719. https://doi.org/10.1002/acm2.13719 10.1002/acm2.13719951235635808971 Search in Google Scholar

22. Anam C, Haryanto F, Widita R, Arif I. Automated estimation of patient’s size from 3D image of patient for size specific dose estimates (SSDE). Adv Sci Eng Med. 2015;7(10): 892-896. https://doi.org/10.1166/asem.2015.1780 10.1166/asem.2015.1780 Search in Google Scholar

23. Anam C, Haryanto F, Widita R, Arif I, Dougherty G. Automated calculation of water-equivalent diameter (DW) based on AAPM task group 220. J Appl Clin Med Phys. 2016;17(4):320-333. https://doi.org/10.1120/jacmp.v17i4.6171 10.1120/jacmp.v17i4.6171569005927455491 Search in Google Scholar

24. International Atomic Energy Agency. Quality assurance programme for computed tomography: Diagnostic and therapy applications. IAEA Human Health Series No. 19. IAEA. Vienna. 2012. Search in Google Scholar

25. Afrieda N, Anam C, Budi WS, Dougherty G. Automated patient position in CT examination using a Kinect camera. J Phys: Conf Ser. 2020;1505:012034. https://doi.org/10.1088/1742-6596/1505/1/012034 10.1088/1742-6596/1505/1/012034 Search in Google Scholar

26. Kaasalainen T, Palmu K, Reijonen V, Kortesniemi M. Effect of patient centering on patient dose and image noise in chest CT. Am J Roentgenol. 2014;203(1):123-130. https://doi.org/10.2214/AJR.13.12028 10.2214/AJR.13.1202824951205 Search in Google Scholar

27. Akin-Akintayo OO, Alexander LF, Neill R, et al. Prevalence and severity of off-centering during diagnostic CT: Observations from 57,621 CT scans of the chest, abdomen, and/or pelvis, current problems in diagnostic radiology. Curr Probl Diagn Radiol. 2019;48(3):229-234. https://doi.org/10.1067/j.cpradiol.2018.02.007 10.1067/j.cpradiol.2018.02.00729576415 Search in Google Scholar

28. Gudjonsdottir J, Svensson JR, Campling S, Brennan PC, Jonsdottir B. Efficient use of automatic exposure control systems in computed tomography requires patient positioning. Acta Radiol. 2009;50(9):1035-1041. https://doi.org/10.3109/02841850903147053 10.3109/0284185090314705319863414 Search in Google Scholar

29. DeWeese L, Griglock T, Moody A, Mehlberg A, Winters C. The improvement of patient centering in computed tomography through a technologist focused education initiative. J Digit Imaging. 2022;35(2):327-334. https://doi.org/10.1007/s10278-021-00580-w 10.1007/s10278-021-00580-w875406635022923 Search in Google Scholar

eISSN:
1898-0309
Język:
Angielski
Częstotliwość wydawania:
4 razy w roku
Dziedziny czasopisma:
Medicine, Biomedical Engineering, Physics, Technical and Applied Physics, Medical Physics