Zacytuj

1. Raj V, Rai A, Sharma S, et al. Role of synchrotron radiation in cancer: A review on techniques and applications. J Anal Pharm Res. 2018;7(2):175-180. https://doi.org/10.15406/japlr.2018.07.00221 Search in Google Scholar

2. Baskar R, Lee KA, Yeo R, et al. Cancer and radiation therapy: current advances and future directions. Int J Med Sci. 2012;9(3):193-199. https://doi.org/10.7150/ijms.3635329800922408567 Search in Google Scholar

3. Scaife JE, Barnett GC, Noble DJ, et al. Exploiting biological and physical determinants of radiotherapy toxicity to individualize treatment. The British Journal of Radiology. 2015;88:1051. https://doi.org/10.1259/bjr.20150172462854026084351 Search in Google Scholar

4. Schardt D, Elsässer T, Schulz-Ertner D. Heavy-ion tumor therapy: Physical and radiobiological benefits. Rev Mod Phys. 2010;82:383-425. https://doi.org/10.1103/RevModPhys.82.383 Search in Google Scholar

5. Ugo A, Gerhard K. Radiotherapy with beams of carbon ions. Rep Prog Phys. 2005;68(8):1861-1882. https://doi.org/10.1088/0034-4885/68/8/R04 Search in Google Scholar

6. Kantemiris I, Karaiskos P, Papagiannis P, et al. Dose and dose averaged LET comparison of 1H, 4He, 6Li, 8Be, 10B, 12C, 14N, and 16O ion beams forming a spread-out Bragg peak. Med Phys. 2011;38(12):6585-6591. https://doi.org/10.1118/1.366291122149840 Search in Google Scholar

7. Hamdi DH, Barbieri S, Chevalier F, et al. In vitro engineering of human 3D chondrosarcoma: a preclinical model relevant for investigations of radiation quality impact. BMC Cancer. 2015;15:579. https://doi.org/10.1186/s12885-015-1590-5452972726253487 Search in Google Scholar

8. Durante M, Orecchia R, Loeffler JS. Charged-particle therapy in cancer: clinical uses and future perspectives. Nat Rev Clin Oncol. 2017;14(8):483-495. https://doi.org/10.1038/nrclinonc.2017.3028290489 Search in Google Scholar

9. Hamdi DH, Chevalier F, Groetz JG, et al. Comparable Senescence Induction in Three-dimensional Human Cartilage Model by Exposure to Therapeutic Doses of X-rays or C-ions. Int J Radiat Oncol Biol Phys. 2016;95(1):139-146, https://doi.org/10.1016/j.ijrobp.2016.02.01427084635 Search in Google Scholar

10. Particle Therapy Facilities in Clinical Operation. Accessed: January 2022. [Online]. Avalable: https://www.ptcog.ch/index.php/facilities-in-operation Search in Google Scholar

11. Lysakovski P, Ferrari A, Tessonnier T, et al. Development and Benchmarking of a Monte Carlo Dose Engine for Proton Radiation Therapy. Front Phys. 2021;9:741453. https://doi.org/10.3389/fphy.2021.741453 Search in Google Scholar

12. Sokol O, Scifoni E, Tinganelli W, et al. Oxygen beams for therapy: advanced biological treatment planning and experimental verification. Phys Med Biol. 2019;62(19):7798-7813. https://doi.org/10.1088/1361-6560/aa88a0 Search in Google Scholar

13. Kurz K, Mairani A, Parodi P. First experimental based characterization of oxygen ion beam depth dose distributions at the Heidelberg ion beam therapy center. Phys Med Biol. 2012;57(15):5017-5034. https://doi.org/10.1088/0031-9155/57/15/5017 Search in Google Scholar

14. Sato T, Kase Y, Watanabe R, et al. Biological Dose Estimation for Charged-Particle Therapy Using an Improved PHITS Code Coupled with a Microdosimetric Kinetic Model. Radiation Research. 2009;171(1):107-117. https://doi.org/10.1667/RR1510.1 Search in Google Scholar

15. Iwamoto Y, Sato T, Hashimoto S, et al. Benchmark study of the recent version of the PHITS code. Journal of Nuclear Science and Technology. 2017;54(5):617-635. https://doi.org/10.1080/00223131.2017.1297742 Search in Google Scholar

16. Iida K, Kohama A, Oyamatsu K. Formula for Proton-Nucleus Reaction Cross Section at Intermediate Energies and Its Application. J Phys Soc Jpn. 2007;76(4):04420. https://doi.org/10.1143/JPSJ.76.044201 Search in Google Scholar

17. Ogawa T, Sato T, Hashimoto S, et al. Energy-dependent fragmentation cross sections of relativistic C12. Phys Rev C. 2015;92:024614. https://doi.org/10.1103/PhysRevC.92.029904 Search in Google Scholar

18. Furihata M, Statistical analysis of light fragment production from medium energy proton-induced reactions. Nucl Instrum Methods Phys Res B. 2000;171:251-258. https://doi.org/10.1016/S0168-583X(00)00332-3 Search in Google Scholar

19. Puchalska M, Tessonnier T, Parodi K, et al. Benchmarking of PHITS for Carbon Ion Therapy. Int J Part Ther. 2018;4(3):48-55. https://doi.org/10.14338/IJPT-17-00029.1687156431773011 Search in Google Scholar

20. Parisi A, Nascimento LF, Van Hoey O, et al. Low temperature thermoluminescence anomaly of LiF:Mg,Cu,P radiation detectors exposed to 1H and 4He ion. Radiation Measurements. 2018;119:155-165. https://doi.org/10.1016/j.radmeas.2018.10.008 Search in Google Scholar

21. Soltani-Nabipour J, Sardari D, Cata-Danil G. Sensitivity of the bragg peak curve to the average ionization potential of the stopping medium. Rom Jurn of Phys. 2009;54(3-4):321-330. Search in Google Scholar

22. Resch, AF, Fuchs, H, Georg D. Benchmarking GATE/Geant4 for 16O ion beam therapy. Phys Med Biol. 2017;62(18):N474-N484. https://doi.org/10.1088/1361-6560/aa807e28718770 Search in Google Scholar

23. MacCabee HD, Ritter MA. Fragmentation of High-Energy Oxygen-Ion Beams in Water. Radiation Research. 1974;60(3):409-421. https://doi.org/10.2307/3574021 Search in Google Scholar

24. Zeitlin C, Miller J, Guetersloh S, et al. Fragmentation of 14N, 16O, 20Ne, and 24Mg nuclei at 290 to 1000 MeV/nucleon. Physical Review C. 2011;83(3):034909. https://doi.org/10.1103/PhysRevC.83.034909 Search in Google Scholar

25. Rucinski A, Traini, G, Roldan, AB, et al. Secondary radiation measurements for particle therapy applications: Charged secondaries produced by 16O ion beams in a PMMA target at large angles. Physica Medica. 2019;64:45-53. https://doi.org/10.1016/j.ejmp.2019.06.00131515035 Search in Google Scholar

26. Boukhellout A, Ounoughi N, Kharfi F. Monte-Carlo simulation using PHITS of secondary neutrons produced in-patient during 16O ion therapy. Radiat Prot Dosimetry. 2022;198(1-2):31-36. https://doi.org/10.1093/rpd/ncab18835037066 Search in Google Scholar

27. Ogawa T, Sato S, Hashimoto S, et al. Analysis of multi-fragmentation reactions induced by relativistic heavy ions using the statistical multi-fragmentation model. Nucl Instrum Methods Phys Res A. 2013;723:36-46. https://doi.org/10.1016/j.nima.2013.04.078 Search in Google Scholar

28. Grogg K, Alpert NM, Zhu X, et al. Mapping 15O production rate for proton therapy verification. Int J Radiat Oncol Biol Phys. 2015;92(2):453-459. https://doi.org/10.1016/j.ijrobp.2015.01.023443189425817530 Search in Google Scholar

29. Ying C K, Bolst D, Rosenfeld A, et al. Characterization of the mixed radiation field produced by carbon and oxygen ion beams of therapeutic energy: A Monte Carlo simulation study. J Med Phys. 2019;44:263-269. https://www.jmp.org.in/text.asp?2019/44/4/263/27267110.4103/jmp.JMP_40_19693620231908385 Search in Google Scholar

30. Grzanka L, Ardenfors O, Bassler N. Monte Carlo simulations of spatial let distributions in clinical proton beams. Radiation Protection Dosimetry. 2018;180(1-4):296-299 https://doi.org/10.1093/rpd/ncx27229378068 Search in Google Scholar

31. Tinganelli W, Durante M, Hirayama R, et al. Kill-painting of hypoxic tumours in charged particle therapy. Sci Rep. 2015;5:17016. https://doi.org/10.1038/srep17016465706026596243 Search in Google Scholar

32. ICRU, 1989. Tissue substitutes in radiation dosimetry and measurement. Report 44, International Commission on Radiation Units and Measurements, Bethesda, MD, USA. Search in Google Scholar

33. Tommasino F, Scifoni E, Durante M. New ions for therapy. International Journal of Particle Therapy. 2016;2(3):428-438. https://doi.org/10.14338/IJPT-15-00027.1687419931772953 Search in Google Scholar

eISSN:
1898-0309
Język:
Angielski
Częstotliwość wydawania:
4 razy w roku
Dziedziny czasopisma:
Medicine, Biomedical Engineering, Physics, Technical and Applied Physics, Medical Physics