Otwarty dostęp

Pulmonary tuberculosis diagnosis, differentiation and disease management: A review of radiomics applications


Zacytuj

1. WHO. Global tuberculosis report 2020. Report. Geneva: World Health Organization, 2020. Search in Google Scholar

2. Prevention CfDCa [Internet]. Testing for tuberculosis (tb). Available from: https://www.cdc.gov/tb/publications/factsheets/testing/tb_testing.htm Search in Google Scholar

3. Tan JH, Acharya UR, Tan C, Abraham KT, Lim CM. Computer-assisted diagnosis of tuberculosis: A first order statistical approach to chest radiograph. Journal of Medical Systems. 2012; 36(5):2751-9. https://doi.org/10.1007/s10916-011-9751-910.1007/s10916-011-9751-921735251 Search in Google Scholar

4. Lewinsohn DM, Leonard MK, LoBue PA, Cohn DL, Daley CL, Desmond E, et al. Official american thoracic society/infectious diseases society of america/centers for disease control and prevention clinical practice guidelines: Diagnosis of tuberculosis in adults and children. Clinical infectious diseases: an official publication of the Infectious Diseases Society of America. 2017; 64(2):111-5. https://doi.org/10.1093/cid/ciw77810.1093/cid/ciw778550447528052967 Search in Google Scholar

5. Chen RY, Dodd LE, Lee M, Paripati P, Hammoud DA, Mountz JM, et al. Pet/ct imaging correlates with treatment outcome in patients with multidrug-resistant tuberculosis. Science translational medicine. 2014;6(265):265ra166. https://doi.org/10.1126/scitranslmed.300950110.1126/scitranslmed.3009501556778425473034 Search in Google Scholar

6. Drain PK, Gardiner J, Hannah H, Broger T, Dheda K, Fielding K, et al. Guidance for studies evaluating the accuracy of biomarker-based nonsputum tests to diagnose tuberculosis. Journal of Infectious Diseases. 2019;220:S108-S115. https://doi.org/10.1093/infdis/jiz35610.1093/infdis/jiz35631593598 Search in Google Scholar

7. Goletti D, Petruccioli E, Joosten SA, Ottenhoff TH. Tuberculosis Biomarkers: From Diagnosis to Protection. Infect Dis Rep. 201624;8(2):6568. https://doi.org/10.4081/idr.2016.656810.4081/idr.2016.6568492793627403267 Search in Google Scholar

8. Melendez J, Ginneken Bv, Maduskar P, Philipsen RHHM, Ayles H, Sánchez CI. On combining multiple-instance learning and active learning for computer-aided detection of tuberculosis. IEEE Transactions on Medical Imaging. 2016;35(4):1013-24. https://doi.org/10.1109/TMI.2015.250567210.1109/TMI.2015.250567226660889 Search in Google Scholar

9. Santosh KC, Antani S. Automated chest x-ray screening: Can lung region symmetry help detect pulmonary abnormalities? IEEE transactions on medical imaging. 2018;37(5):1168-77. https://doi.org/10.1109/TMI.2017.277563610.1109/TMI.2017.277563629727280 Search in Google Scholar

10. Skoura E, Zumla A, Bomanji J. Imaging in tuberculosis. International Journal of Infectious Diseases. 2015;32:87-93. https://doi.org/10.1016/j.ijid.2014.12.00710.1016/j.ijid.2014.12.00725809762 Search in Google Scholar

11. Chassagnon G, Vakalopoulou M, Paragios N, Revel MP. Artificial intelligence applications for thoracic imaging. European Journal of Radiology. 2020;123:108774. https://doi.org/10.1016/j.ejrad.2019.10877410.1016/j.ejrad.2019.10877431841881 Search in Google Scholar

12. Mettler FA, Jr., Huda W, Yoshizumi TT, Mahesh M. Effective doses in radiology and diagnostic nuclear medicine: A catalog. Radiology. 2008; 248(1):254-63. https://doi.org/10.1148/radiol.248107145110.1148/radiol.248107145118566177 Search in Google Scholar

13. Van’t Hoog AH, Meme HK, van Deutekom H, et al. High sensitivity of chest radiograph reading by clinical officers in a tuberculosis prevalence survey. Int J Tuberc Lung Dis. 2011;15(10):1308-14. https://doi.org/10.5588/ijtld.11.0004.10.5588/ijtld.11.000422283886 Search in Google Scholar

14. Lambin P, Leijenaar RTH, Deist TM, Peerlings J, de Jong EEC, et al. Radiomics: The bridge between medical imaging and personalized medicine. Nat Rev Clin Oncol. 2017;14(12):749-762. https://doi.org/10.1038/nrclinonc.2017.14110.1038/nrclinonc.2017.14128975929 Search in Google Scholar

15. Hogeweg L, Sánchez CI, Maduskar P, Philipsen R, Story A, Dawson R, et al. Automatic detection of tuberculosis in chest radiographs using a combination of textural, focal, and shape abnormality analysis. IEEE Transactions on Medical Imaging. 2015;34(12):2429-42. https://doi.org/10.1109/TMI.2015.240576110.1109/TMI.2015.240576125706581 Search in Google Scholar

16. Ginneken Bv, Katsuragawa S, ter Haar Romeny, Kunio D, Viergever MA. Automatic detection of abnormalities in chest radiographs using local texture analysis. IEEE Transactions on Medical Imaging. 2002;21(2):139-49. https://doi.org/10.1109/42.99313210.1109/42.99313211929101 Search in Google Scholar

17. Shen R, Cheng I, Basu A. A hybrid knowledge-guided detection technique for screening of infectious pulmonary tuberculosis from chest radiographs. IEEE Transactions on Biomedical Engineering. 2010;57(11):2646-56. https://doi.org/10.1109/TBME.2010.205750910.1109/TBME.2010.205750920624701 Search in Google Scholar

18. Melendez J, Ginneken Bv, Maduskar P, Philipsen RHHM, Reither K, Breuninger M, et al. A novel multiple-instance learning-based approach to computer-aided detection of tuberculosis on chest x-rays. IEEE Transactions on Medical Imaging. 2015;34(1):179-92. https://doi.org/10.1109/TMI.2014.235053910.1109/TMI.2014.235053925163057 Search in Google Scholar

19. Jaeger S, Juarez-Espinosa OH, Candemir S, Poostchi M, Yang F, Kim L, et al. Detecting drug-resistant tuberculosis in chest radiographs. International journal of computer assisted radiology and surgery. 2018;13(12):1915-25. https://doi.org/10.1007/s11548-018-1857-910.1007/s11548-018-1857-9622376230284153 Search in Google Scholar

20. Abideen ZU, Ghafoor M, Munir K, Saqib M, Ullah A, Zia T, et al. Uncertainty assisted robust tuberculosis identification with bayesian convolutional neural networks. IEEE Access. 2020;8:22812-25. https://doi.org/10.1109/ACCESS.2020.297002310.1109/ACCESS.2020.2970023717603732391238 Search in Google Scholar

21. Summers RM. Are we at a crossroads or a plateau? Radiomics and machine learning in abdominal oncology imaging. Abdominal Radiology. 2019;44(6):1985-9. https://doi.org/10.1007/s00261-018-1613-110.1007/s00261-018-1613-129730736 Search in Google Scholar

22. Pesapane F, Codari M, Sardanelli F. Artificial intelligence in medical imaging: Threat or opportunity? Radiologists again at the forefront of innovation in medicine. European Radiology Experimental. 2018;2(1):1-10. https://doi.org/10.1186/s41747-018-0061-610.1186/s41747-018-0061-6619920530353365 Search in Google Scholar

23. Rizzo S, Botta F, Raimondi S, Origgi D, Fanciullo C, Morganti AG, et al. Radiomics: The facts and the challenges of image analysis. European Radiology Experimental. 2018;2(1):1-8. https://doi.org/10.1186/s41747-018-0068-z10.1186/s41747-018-0068-z623419830426318 Search in Google Scholar

24. Gillies RJ, Kinahan PE, Hricak H. Radiomics: Images are more than pictures, they are data. Radiology. 2016; 278(2):563-77. https://doi.org/10.1148/radiol.201515116910.1148/radiol.2015151169473415726579733 Search in Google Scholar

25. Kumar V, Gu Y, Basu S, Berglund A, Eschrich SA, Schabath MB, et al. Radiomics: The process and the challenges. Magnetic resonance imaging. 2012;30(9):1234-48. https://doi.org/10.1016/j.mri.2012.06.01010.1016/j.mri.2012.06.010356328022898692 Search in Google Scholar

26. Papanikolaou N, Matos C, Koh DM. How to develop a meaningful radiomic signature for clinical use in oncologic patients. Cancer Imaging. 2020;20(1):33. https://doi.org/10.1186/s40644-020-00311-410.1186/s40644-020-00311-4719580032357923 Search in Google Scholar

27. Liu Q, Li J, Liu F, Yang W, Ding J, Chen W, et al. A radiomics nomogram for the prediction of overall survival in patients with hepatocellular carcinoma after hepatectomy. Cancer Imaging. 2020;20(1):82. https://doi.org/10.1186/s40644-020-00360-910.1186/s40644-020-00360-9766780133198809 Search in Google Scholar

28. van Griethuysen JJM, Fedorov A, Parmar C, Hosny A, Aucoin N, Narayan V, et al. Computational radiomics system to decode the radiographic phenotype. Cancer research. 2017;77(21):e104-e7. https://doi.org/10.1158/0008-5472.CAN-17-033910.1158/0008-5472.CAN-17-0339567282829092951 Search in Google Scholar

29. Bei W, Min L, He M, Fangfang H, Yan W, Shunying Z, et al. Computed tomography-based predictive nomogram for differentiating primary progressive pulmonary tuberculosis from community-acquired pneumonia in children. BMC Medical Imaging. 2019;19:63. https://doi.org/10.1186/s12880-019-0355-z10.1186/s12880-019-0355-z668834131395012 Search in Google Scholar

30. Lambin P, Rios-Velazquez E, Leijenaar R, Carvalho S, van Stiphout RGPM, Granton P, et al. Radiomics: Extracting more information from medical images using advanced feature analysis. European Journal of Cancer. 2012;48(4):441-6. https://doi.org/10.1016/j.ejca.2011.11.03610.1016/j.ejca.2011.11.036453398622257792 Search in Google Scholar

31. Moher D, Liberati A, Tetzlaff J, Altman DG, The PG. Preferred reporting items for systematic reviews and meta-analyses: The prisma statement. PLOS Medicine. 2009;6(7):e1000097. https://doi.org/10.1371/journal.pmed.100009710.1371/journal.pmed.1000097270759919621072 Search in Google Scholar

32. Shi W, Zhou L, Peng X, Ren H, Wang Q, Shan F, et al. Hiv-infected patients with opportunistic pulmonary infections misdiagnosed as lung cancers: The clinicoradiologic features and initial application of ct radiomics. Journal of thoracic disease. 2019;11(6):2274-86. https://doi.org/10.21037/jtd.2019.06.2210.21037/jtd.2019.06.22662677731372264 Search in Google Scholar

33. Feng B, Chen X, Chen Y, Liu K, Li K, Liu X, et al. Radiomics nomogram for preoperative differentiation of lung tuberculoma from adenocarcinoma in solitary pulmonary solid nodule. European Journal of Radiology. 2020;128. https://doi.org/10.1016/j.ejrad.2020.10902210.1016/j.ejrad.2020.10902232371184 Search in Google Scholar

34. Cui EN, Yu T, Shang S-J, Wang X-Y, Jin Y-L, Dong Y, et al. Radiomics model for distinguishing tuberculosis and lung cancer on computed tomography scans. World Journal of Clinical Cases. 2020;8(21):5203-12. https://doi.org/10.12998/wjcc.v8.i21.520310.12998/wjcc.v8.i21.5203767472733269256 Search in Google Scholar

35. Du D, Gu J, Chen X, Lv W, Feng Q, Rahmim A, et al. Integration of pet/ct radiomics and semantic features for differentiation between active pulmonary tuberculosis and lung cancer. Molecular Imaging & Biology. 2021;23(2):287-298. https://doi.org/10.1007/s11307-020-01550-410.1007/s11307-020-01550-433030709 Search in Google Scholar

36. Cui EN, Yu T, Shang SJ, Wang XY, Jin YL, Dong Y, et al. Radiomics model for distinguishing tuberculosis and lung cancer on computed tomography scans. World journal of clinical cases. 2020;8(21):5203-12. https://doi.org/10.12998/wjcc.v8.i21.520310.12998/wjcc.v8.i21.5203 Search in Google Scholar

37. Zwanenburg A, Vallières M, Abdalah MA, Aerts HJWL, Andrearczyk V, Apte A, et al. The image biomarker standardisation initiative: Standardised quantitative radiomics for high-throughput image-based phenotyping. Radiology. 2020;295(2):328-38. https://doi.org/10.1148/radiol.202019114510.1148/radiol.2020191145719390632154773 Search in Google Scholar

eISSN:
1898-0309
Język:
Angielski
Częstotliwość wydawania:
4 razy w roku
Dziedziny czasopisma:
Medicine, Biomedical Engineering, Physics, Technical and Applied Physics, Medical Physics