Zacytuj

1. Fazekas JT. Treatment of grades I and II brain astrocytomas. the role of radiotherapy. International Journal of Radiation Oncology, Biology, Physics. 1977;2(7-8):661-666. https://doi.org/10.1016/0360-3016(77)90045-110.1016/0360-3016(77)90045-1 Search in Google Scholar

2. Stupp R, Weller M, Belanger K, et al. Radiotherapy plus Concomitant and Adjuvant Temozolomide for Glioblastoma. The New England Journal of Medicine. 2005;352(10):987-96. https://doi.org/10.1056/NEJMoa04333010.1056/NEJMoa043330 Search in Google Scholar

3. Allemani C, Matsuda T, Di Carlo V, et al. Global surveillance of trends in cancer survival 2000–14 (CONCORD-3): analysis of individual records for 37 513 025 patients diagnosed with one of 18 cancers from 322 population-based registries in 71 countries. The Lancet. 2018;391(10125):1023-1075. https://doi.org/10.1016/S0140-6736(17)33326-310.1016/S0140-6736(17)33326-3 Search in Google Scholar

4. Wagner D, Christiansen H, Wolff H, Vorwerk H. Radiotherapy of malignant gliomas: Comparison of volumetric single arc technique (RapidArc), dynamic intensity-modulated technique and 3D conformal technique. Radiotherapy and Oncology. 2009;93(3):593-596. https://doi.org/10.1016/j.radonc.2009.10.00210.1016/j.radonc.2009.10.00219897266 Search in Google Scholar

5. Hrbacek J, Lang S, Klöck S. Commissioning of Photon Beams of a Flattening Filter-Free Linear Accelerator and the Accuracy of Beam Modeling Using an Anisotropic Analytical Algorithm. International Journal of Radiation Oncology, Biology, Physics. 2011;80(4):1228-1237. https://doi.org/10.1016/j.ijrobp.2010.09.05010.1016/j.ijrobp.2010.09.05021129855 Search in Google Scholar

6. Georg D, Knöös T, McClean B. Current status and future perspective of flattening filter free photon beams. Med Phys. 2011; 38 (3):15. https://doi.org/10.1118/1.355464310.1118/1.355464321520840 Search in Google Scholar

7. Kry SF, Vassiliev ON, Mohan R. Out-of-field photon dose following removal of the flattening filter from a medical accelerator. Phys Med Biol. 2010;55(8):2155-2166. https://doi.org/10.1088/0031-9155/55/8/00310.1088/0031-9155/55/8/00320305334 Search in Google Scholar

8. Gasic D, Ohlhues L, Brodin NP, et al. A treatment planning and delivery comparison of volumetric modulated arc therapy with or without flattening filter for gliomas, brain metastases, prostate, head/neck and early stage lung cancer. Acta Oncologica. 2014;53(8):1005-1011. https://doi.org/10.3109/0284186X.2014.92557810.3109/0284186X.2014.92557824937551 Search in Google Scholar

9. Baic B, Kozłowska B, Kwiatkowski R, Dybek M. Clinical advantages of using unflattened 6-MV and 10-MV photon beams generated by the medical accelerator Elekta Versa HD based on their dosimetric parameters in comparison to conventional beams. Nukleonika. 2019;64(3):77-86. https://doi.org/10.2478/nuka-2019-001010.2478/nuka-2019-0010 Search in Google Scholar

10. Spruijt KH, Dahele M, Cuijpers JP, et al. Flattening Filter Free vs Flattened Beams for Breast Irradiation. International Journal of Radiation Oncology, Biology, Physics. 2013;85(2):506-513. https://doi.org/10.1016/j.ijrobp.2012.03.04010.1016/j.ijrobp.2012.03.04022672750 Search in Google Scholar

11. Treutwein M, Hipp M, Koelbl O, Dobler B. Volumetric-modulated arc therapy and intensity-modulated radiation therapy treatment planning for prostate cancer with flattened beam and flattening filter free linear accelerators. J Appl Clin Med Phys. 2017;18(5):307-314. https://doi.org/10.1002/acm2.1216810.1002/acm2.12168 Search in Google Scholar

12. Tamilarasu S, Saminathan M, Sharma S, Pahuja A, Dewan A. Comparative Evaluation of a 6MV Flattened Beam and a Flattening Filter Free Beam for Carcinoma of Cervix – IMRT Planning Study. Asian Pac J Cancer Prev. 2018;19(3). https://doi.org/10.22034/APJCP.2018.19.3.639 Search in Google Scholar

13. ICRU Report 50: Prescribing, Recording and Reporting Photon Beam Therapy; International Commission on Radiation Units and Measurements (ICRU). Journal of the ICRU. 1993;os-26(1). https://doi.org/10.1093/jicru_os26.1.iii10.1093/jicru_os26.1.iii Search in Google Scholar

14. ICRU Report 62: Prescribing, Recording and Reporting Photon Beam Therapy (Supplement to ICRU Report 50); International Commission on Radiation Units and Measurements (ICRU). Journal of the ICRU. 1999;os-32(1). https://doi.org/10.1093/jicru_os32.1.iii10.1093/jicru_os32.1.iii Search in Google Scholar

15. Niyazi M, Brada M, Chalmers AJ, et al. ESTRO-ACROP guideline “target delineation of glioblastomas.” Radiotherapy and Oncology. 2016;118(1):35-42. https://doi.org/10.1016/j.radonc.2015.12.00310.1016/j.radonc.2015.12.003 Search in Google Scholar

16. London Cancer Brain and Spine Pathway Board Neuro-oncology Guidelines, May 2014 (http://www.londoncancer.org/media/84343/london-cancer-neuro-oncology-radiotherapy-guidelines-2013-final-v1-0.pdf) Search in Google Scholar

17. Eekers DB, in ’t Ven L, Roelofs E, et al. The EPTN consensus-based atlas for CT- and MR-based contouring in neuro-oncology. Radiotherapy and Oncology. 2018;128(1):37-43. https://doi.org/10.1016/j.radonc.2017.12.01310.1016/j.radonc.2017.12.013 Search in Google Scholar

18. Xiao Y, Kry SF, Popple R, et al. Flattening filter-free accelerators: a report from the AAPM Therapy Emerging Technology Assessment Work Group. Journal of Applied Clinical Medical Physics. 2015;16(3):12-29. https://doi.org/10.1120/jacmp.v16i3.521910.1120/jacmp.v16i3.5219 Search in Google Scholar

19. Meshram MN, Pramanik S, Ranjith CP, Gopal SK, Dobhal R. Dosimetric properties of equivalent-quality flattening filter-free (FFF) and flattened photon beams of Versa HD linear accelerator. Journal of Applied Clinical Medical Physics. 2016;17(3):358-370. https://doi.org/10.1120/jacmp.v17i3.617310.1120/jacmp.v17i3.6173 Search in Google Scholar

20. ICRU Report 83: Prescribing, Recording, and Reporting Photon-Beam Intensity-Modulated Radiation Therapy (IMRT); International Commission on Radiation Units and Measurements (ICRU). Journal of the ICRU. 2010;10(1). https://doi.org/10.1093/jicru_ndq00110.1093/jicru_ndq001 Search in Google Scholar

21. Wu Q, Mohan R, Morris M, Lauve A, Schmidt-Ullrich R. Simultaneous integrated boost intensity-modulated radiotherapy for locally advanced head-and-neck squamous cell carcinomas. I: dosimetric results. International Journal of Radiation Oncology, Biology, Physics. 2003;56(2):573-585. https://doi.org/10.1016/S0360-3016(02)04617-510.1016/S0360-3016(02)04617-5 Search in Google Scholar

22. Riet A van’t, Mak ACA, Moerland MA, Elders LH, van der Zee W. A conformation number to quantify the degree of conformality in brachytherapy and external beam irradiation: Application to the prostate. International Journal of Radiation Oncology, Biology, Physics. 1997;37(3):731-736. https://doi.org/10.1016/S0360-3016(96)00601-310.1016/S0360-3016(96)00601-3 Search in Google Scholar

23. Aoyama H, Westerly DC, Mackie TR, et al. Integral radiation dose to normal structures with conformal external beam radiation. International Journal of Radiation Oncology, Biology, Physics. 2006;64(3):962-967. https://doi.org/10.1016/j.ijrobp.2005.11.00510.1016/j.ijrobp.2005.11.00516458781 Search in Google Scholar

24. Sun W, Chen L, Yang X, Wang B, Deng X, Huang X. Comparison of treatment plan quality of VMAT for esophageal carcinoma with: flattening filter beam versus flattening filter free beam. J Cancer. 2018;9(18):3263-3268. https://doi.org/10.7150/jca.2604410.7150/jca.26044616069230271485 Search in Google Scholar

25. Reggiori G, Mancosu P, Castiglioni S, et al. Can volumetric modulated arc therapy with flattening filter free beams play a role in stereotactic body radiotherapy for liver lesions? A volume-based analysis: SBRT with FFF VMAT for liver metastasis. Med Phys. 2012;39(2):1112-1118. https://doi.org/10.1118/1.367985810.1118/1.367985822320821 Search in Google Scholar

26. Lang S, Shrestha B, Graydon S, et al. Clinical application of flattening filter free beams for extracranial stereotactic radiotherapy. Radiotherapy and Oncology. 2013;106(2):255-259. https://doi.org/10.1016/j.radonc.2012.12.01210.1016/j.radonc.2012.12.01223395063 Search in Google Scholar

27. Dang TM, Peters MJ, Hickey B, Semciw A. Efficacy of flattening-filter-free beam in stereotactic body radiation therapy planning and treatment: A systematic review with meta-analysis. J Med Imaging Radiat Oncol. 2017;61(3):379-387. https://doi.org/10.1111/1754-9485.1258310.1111/1754-9485.1258328116813 Search in Google Scholar

28. Jia F, Xu D, Yue H, Wu H, Li G. Comparison of Flattening Filter and Flattening Filter-Free Volumetric Modulated Arc Radiotherapy in Patients with Locally Advanced Nasopharyngeal Carcinoma. Med Sci Monit. 2018;24:8500-8505. https://doi.org/10.12659/MSM.91021810.12659/MSM.910218627672130472719 Search in Google Scholar

29. Ong CL, Dahele M, Cuijpers JP, Senan S, Slotman BJ, Verbakel WFAR. Dosimetric Impact of Intrafraction Motion During RapidArc Stereotactic Vertebral Radiation Therapy Using Flattened and Flattening Filter-Free Beams. International Journal of Radiation Oncology, Biology, Physics. 2013;86(3):420-425. https://doi.org/10.1016/j.ijrobp.2012.12.02810.1016/j.ijrobp.2012.12.02823523183 Search in Google Scholar

30. Kragl G, af Wetterstedt S, Knäusl B, et al. Dosimetric characteristics of 6 and 10MV unflattened photon beams. Radiotherapy and Oncology. 2009;93(1):141-146. https://doi.org/10.1016/j.radonc.2009.06.00810.1016/j.radonc.2009.06.00819592123 Search in Google Scholar

31. Titt U, Vassiliev ON, Pönisch F, Dong L, Liu H, Mohan R. A flattening filter free photon treatment concept evaluation with Monte Carlo: FFF Monte Carlo simulation. Med Phys. 2006;33(6Part1):1595-1602. https://doi.org/10.1118/1.219832710.1118/1.219832716872067 Search in Google Scholar

32. Lechner W, Kragl G, Georg D. Evaluation of treatment plan quality of IMRT and VMAT with and without flattening filter using Pareto optimal fronts. Radiotherapy and Oncology. 2013;109(3):437-441. https://doi.org/10.1016/j.radonc.2013.09.02010.1016/j.radonc.2013.09.02024183067 Search in Google Scholar

33. Vassiliev ON, Titt U, Pönisch F, Kry SF, Mohan R, Gillin MT. Dosimetric properties of photon beams from a flattening filter free clinical accelerator. Phys Med Biol. 2006;51(7):1907-1917. https://doi.org/10.1088/0031-9155/51/7/01910.1088/0031-9155/51/7/01916552113 Search in Google Scholar

34. Sun W, Chen L, Yang X, Wang B, Deng X, Huang X. Comparison of treatment plan quality of VMAT for esophageal carcinoma with: flattening filter beam versus flattening filter free beam. J Cancer. 2018;9(18):3263-3268. https://doi.org/10.7150/jca.2604410.7150/jca.26044616069230271485 Search in Google Scholar

35. Ong CL, Dahele M, Cuijpers JP, Senan S, Slotman BJ, Verbakel WFAR. Dosimetric Impact of Intrafraction Motion During RapidArc Stereotactic Vertebral Radiation Therapy Using Flattened and Flattening Filter-Free Beams. International Journal of Radiation Oncology, Biology, Physics. 2013;86(3):420-425. https://doi.org/10.1016/j.ijrobp.2012.12.02810.1016/j.ijrobp.2012.12.02823523183 Search in Google Scholar

36. Sørensen BS, Vestergaard A, Overgaard J, Præstegaard LH. Dependence of cell survival on instantaneous dose rate of a linear accelerator. Radiotherapy and Oncology. 2011;101(1):223-225. https://doi.org/10.1016/j.radonc.2011.06.01810.1016/j.radonc.2011.06.01821737168 Search in Google Scholar

37. Nakano H, Minami K, Yagi M, et al. Radiobiological effects of flattening filter–free photon beams on A549 non-small-cell lung cancer cells. Journal of Radiation Research. 2018;59(4):442-445. https://doi.org/10.1093/jrr/rry04110.1093/jrr/rry041605421629850845 Search in Google Scholar

38. King RB, Hyland WB, Cole AJ, et al. An in vitro study of the radiobiological effects of flattening filter free radiotherapy treatments. Phys Med Biol. 2013;58(5):N83-N94. https://doi.org/10.1088/0031-9155/58/5/N8310.1088/0031-9155/58/5/N8323399781 Search in Google Scholar

39. Lohse I, Lang S, Hrbacek J, et al. Effect of high dose per pulse flattening filter-free beams on cancer cell survival. Radiotherapy and Oncology. 2011;101(1):226-232. https://doi.org/10.1016/j.radonc.2011.05.07210.1016/j.radonc.2011.05.07221733592 Search in Google Scholar

40. Favaudon V, Caplier L, Monceau V, et al. Ultrahigh dose-rate FLASH irradiation increases the differential response between normal and tumor tissue in mice. Sci Transl Med. 2014;6(245):245ra93-245ra93. https://doi.org/10.1126/scitranslmed.300897310.1126/scitranslmed.300897325031268 Search in Google Scholar

eISSN:
1898-0309
Język:
Angielski
Częstotliwość wydawania:
4 razy w roku
Dziedziny czasopisma:
Medicine, Biomedical Engineering, Physics, Technical and Applied Physics, Medical Physics