Otwarty dostęp

Effects of flattening filter (FF) and flattening filter-free (FFF) beams on small-field and large-field dose distribution using the VMAT treatment plan


Zacytuj

1. Ślosarek K. Podstawy planowania leczenia w radioterapii. Gliwice: Polskie Towarzystwo Onkologiczne, Oddział Śląski; 2007. Search in Google Scholar

2. Malicki J, Ślosarek K. Planowanie leczenia i dozymetria w radioterapii. Gdańsk: VIA MEDICA; 2016. Search in Google Scholar

3. Waligórski M, Lesiak J. Podstawy Radioterapii. Warszawa: PWN; 2000. Search in Google Scholar

4. Łobodziec W. Dozymetria promieniowania jonizującego w radioterapii. Katowice: Wyd. UŚ; 1999. Search in Google Scholar

5. Kukołowicz P. Charakterystyka wiązek terapeutycznych fotonów i elektronów. Kielce: RTA; 2001. Search in Google Scholar

6. Van Dam J, Marinello G. Methods for in vivo dosimetry in external radiotherapy. Brussels: ESTRO; 1994. Search in Google Scholar

7. Jia F, Xu D, Yue H, Wu H, Li G. Comparison of Flattening Filter and Flattening Filter-Free Volumetric Modulated Arc Radiotherapy in Patients with Locally Advanced Nasopharyngeal Carcinoma. Med Sci Monit. 2018;24:8500-8505. https://doi.org/10.12659/MSM.91021810.12659/MSM.910218627672130472719 Search in Google Scholar

8. Ma C, Chen M, Long T, Parsons D, et al. Flattening filter free in intensity modulated radiotherapy (IMRT) - Theoretical modeling with delivery efficiency analysis. Med Phys. 2019;46(1):34-44. https://doi.org/10.1002/mp.1326710.1002/mp.1326730371944 Search in Google Scholar

9. Alvarez Moret J, Obermeier T, Pohl F. Second cancer risk after radiation therapy of ependymoma using the flattening filter free irradiation mode of a linear accelerator. J Appl Clin Med Phys. 2018;19(5):632-639. https://doi.org/10.1002/acm2.1243810.1002/acm2.12438612315830125453 Search in Google Scholar

10. Wang L, Ding G. Estimating the uncertainty of calculated out-of-field organ dose from a commercial treatment planning system. J Appl Clin Med Phys. 2018;19(4):319-324. https://doi.org/10.1002/acm2.1236710.1002/acm2.12367603634529896876 Search in Google Scholar

11. Yao C, Chang T, Lin C. Three-dimensional dose comparison of flattening filter (FF) and flattening filter-free (FFF) radiation therapy by using NIPAM gel dosimetry. PLoSOne. 2019;14(2):e0212546. https://doi.org/10.1371/journal.pone.021254610.1371/journal.pone.0212546638388630789968 Search in Google Scholar

12. Irazola L, Sánchez-Nieto B, García-Hernández M. 10-Mv SBRT FFF Irradiation Technique is associated to the lowest peripheral dose: the outcome of 142 treatment plans for the 10 most common tumor locations. Radiat Prot Dosimetry. 2019;185(2):183-195. https://doi.org/10.1093/rpd/ncy29210.1093/rpd/ncy29230649534 Search in Google Scholar

13. Aoki S, Yamashita H, Haga A. Flattening filter-free technique in volumetric modulated arc therapy for lung stereotactic body radiotherapy: A clinical comparison with the flattening filter technique. Oncol Lett. 2018;15(3):3928-3936. https://doi.org/10.3892/ol.2018.780910.3892/ol.2018.7809585493229563993 Search in Google Scholar

14. Duane S. Dosimetry for Flattening Filter Free (FFF) linac beams and small fields (SF). National Physics Laboratory, 2013. Search in Google Scholar

15. Dobler B, Obermeier T, Hautmann M. Simultaneous integrated boost therapy of carcinoma of the hypopharynx/larynx with and without flattening filter - a treatment planning and dosimetry study. Radiat Oncol. 2017;12(1):114. https://doi.org/10.1186/s13014-017-0850-810.1186/s13014-017-0850-8549902528679448 Search in Google Scholar

16. Maier J, Knott B, Maerz M. Simultaneous integrated boost (SIB) radiation therapy of right sided breast cancer with and without flattening filter - A treatment planning study. Radiat Oncol. 2016;11(1):111. https://doi.org/10.1186/s13014-016-0687-610.1186/s13014-016-0687-6500663327577561 Search in Google Scholar

17. Dobler B, Maier J, Knott B. Second Cancer Risk after simultaneous integrated boost radiation therapy of right sided breast cancer with and without flattening filter. Strahlenther Onkol. 2016;192(10):687-95. https://doi.org/10.1007/s00066-016-1025-510.1007/s00066-016-1025-527534409 Search in Google Scholar

18. Baic B, Kozłowska B, Kwiatkowski R, Dybek M. Clinical advantages of using unflattened 6-MV and 10-MV photon beams generated by the medical accelerator Elekta Versa HD based on their dosimetric parameters in comparison to conventional beams. Nukleonika;2019:64(3):77-86. https://doi.org/10.2478/nuka-2019-001010.2478/nuka-2019-0010 Search in Google Scholar

19. Ślosarek K, Grządziel A, Szlag M, Bystrzycka J. Radiation Planning Index for dose distribution evaluation in stereotactic radiotherapy. Reports of Practical Oncology and Radiotherapy. 2008;13(4):182-186. https://doi.org/10.1016/S1507-1367(10)60007-710.1016/S1507-1367(10)60007-7 Search in Google Scholar

20. Leszczyński W, Ślosarek K, Szlag M. Comparison of dose distribution in IMRT and RapidArc technique in prostate radiotherapy.Reports of Practical Oncology and Radiotherapy, 2012;17(6):348-351. https://doi.org/10.1016/j.rpor.2012.05.00210.1016/j.rpor.2012.05.002386325324377036 Search in Google Scholar

21. Radwan M, Grządziel A, Hawrylewicz L, Ślosarek K, Osewski W. The influence of photon energy on dose distribution for IMRT and VMAT plans. Nowotwory Journal of Oncology. 2014;64(3):230-236. https://doi.org/10.5603/NJO.2014.003710.5603/NJO.2014.0037 Search in Google Scholar

eISSN:
1898-0309
Język:
Angielski
Częstotliwość wydawania:
4 razy w roku
Dziedziny czasopisma:
Medicine, Biomedical Engineering, Physics, Technical and Applied Physics, Medical Physics