Otwarty dostęp

The role of the spatially fractionated radiation therapy in the management of advanced bulky tumors


Zacytuj

1. Tao L, Rakfal S, Wu A. Comparison of integral doses in conventional 2D, conformal 3D and IMRT plans. Medical Physics. 2002;29(6):1211. Search in Google Scholar

2. Arabpour A, Shahbazi-Gahrouei D. Effect of Hypofractionation on Prostate Cancer Radiotherapy. International Journal of Cancer Management. 2017;10(10):e12204. https://doi.org/10.5812/ijcm.1220410.5812/ijcm.12204 Search in Google Scholar

3. Shahbazi-Gahrouei D, Gookizadeh A, Sohrabi M, Arab Z. Normal tissues absorbed dose and associated risk in breast radiotherapy. Journal of Radiobiology. 2015;2(1). Search in Google Scholar

4. Peñagarícano JA, Moros EG, Ratanatharathorn V, Yan Y, Corry P. Evaluation of spatially fractionated radiotherapy (GRID) and definitive chemoradiotherapy with curative intent for locally advanced squamous cell carcinoma of the head and neck: initial response rates and toxicity. Int J Radiat Oncol Biol Phys. 2010;76(5):1369-1375. https://doi.org/10.1016/j.ijrobp.2009.03.03010.1016/j.ijrobp.2009.03.030 Search in Google Scholar

5. Kaiser A, Mohiuddin MM, Jackson GL. Dramatic response from neoadjuvant, spatially fractionated GRID radiotherapy (SFGRT) for large, high-grade extremity sarcoma. Journal of Radiation Oncology. 2013;2(1):103-106. https://doi.org/10.1007/s13566-012-0064-510.1007/s13566-012-0064-5 Search in Google Scholar

6. Asur R, Butterworth KT, Penagaricano JA, Prise KM, Griffin RJ. High dose bystander effects in spatially fractionated radiation therapy. Cancer Letters. 2015;356(1):52-57. https://doi.org/10.1016/j.canlet.2013.10.03210.1016/j.canlet.2013.10.032 Search in Google Scholar

7. Mohiuddin M, Fujita M, Regine WF, Megooni AS, Ibbott GS, Ahmed MM. High-dose spatially-fractionated radiation (GRID): a new paradigm in the management of advanced cancers. Int J Radiat Oncol Biol Phys. 1999;45(3):721-727. https://doi.org/10.1016/S0360-3016(99)00170-410.1016/S0360-3016(99)00170-4 Search in Google Scholar

8. Saeb M, Shahbazi-Gahrouei D, Monadi S. Evaluation of targeted image-guided radiation therapy treatment planning system by use of american association of physicists in medicine task group-119 test cases. Journal of Medical Signals and Sensors. 2018;8(2):95. https://doi.org/10.4103/jmss.JMSS_44_1710.4103/jmss.JMSS_44_17 Search in Google Scholar

9. Mohiuddin M, Curtis DL, Grizos WT, Komarnicky L. Palliative treatment of advanced cancer using multiple nonconfluent pencil beam radiation: A pilot study. Cancer. 1990;66(1):114-118. https://doi.org/10.1002/1097-0142(19900701)66:1<114::AIDCNCR2820660121>3.0.CO;2-L Search in Google Scholar

10. Mohiuddin M, Stevens JH, Reiff JE, Huq MS, Suntharalingam N. Spatially fractionated (GRID) radiation for palliative treatment of advanced cancer. Radiation Oncology Investigations. 1996;4(1):41-47. https://doi.org/10.1002/(SICI)1520-6823(1996)4:1<41::AIDROI7>3.0.CO;2-M Search in Google Scholar

11. Mohiuddin M, Kudrimoti M, Regine W, Meigooni A, Zwicker R. Spatially fractionated radiation (SFR) in the management of advanced cancer. Int J Radiat Oncol Biol Phys. 2002;54:342-343. https://doi.org/10.1016/S0360-3016(02)03646-510.1016/S0360-3016(02)03646-5 Search in Google Scholar

12. Meigooni A, Malik U, Zhang H, et al. Grid: A location dependent intensity modulated radiotherapy for bulky tumors. Iranian Journal of Radiation Research (Print). 2005;2(4):167-174. Search in Google Scholar

13. Zwicker RD, Meigooni A, Mohiuddin M. Therapeutic advantage of grid irradiation for large single fractions. Int J Radiat Oncol Biol Phys. 2004;58(4):1309-1315. https://doi.org/10.1016/j.ijrobp.2003.07.00310.1016/j.ijrobp.2003.07.00315001276 Search in Google Scholar

14. Buckey C, Stathakis S, Cashon K, et al. Evaluation of a commercially-available block for spatially fractionated radiation therapy. Journal of Applied Clinical Medical Physics. 2010;11(3). https://doi.org/10.1120/jacmp.v11i3.316310.1120/jacmp.v11i3.3163572044220717082 Search in Google Scholar

15. Ha JK, Zhang G, Naqvi SA, Regine WF, Cedric XY. Feasibility of delivering grid therapy using a multileaf collimator. Medical Physics. 2006;33(1):76-82. https://doi.org/10.1118/1.214011610.1118/1.214011616485412 Search in Google Scholar

16. Neuner G, Mohiuddin MM, Vander Walde N, et al. High-dose spatially fractionated GRID radiation therapy (SFGRT): a comparison of treatment outcomes with Cerrobend vs. MLC SFGRT. Int J Radiat Oncol Biol Phys. 2012;82(5):1642-1649. https://doi.org/10.1016/j.ijrobp.2011.01.06510.1016/j.ijrobp.2011.01.06521531514 Search in Google Scholar

17. Cole AJ, McGarry CK, Butterworth KT, et al. Investigating the influence of respiratory motion on the radiation induced bystander effect in modulated radiotherapy. Physics in Medicine & Biology. 2013;58(23):8311. https://doi.org/10.1088/0031-9155/58/23/831110.1088/0031-9155/58/23/831124216623 Search in Google Scholar

18. Jordan K, Francis W, Dar A, Yu E, Yartsev S, Chen J. SU-C-BRA-01: Efficient Generation of Beamlet Arrays with Hybrid Multileaf Collimator for Grid Therapy. Medical Physics. 2011;38(6Part2):3368-3368. https://doi.org/10.1118/1.361146110.1118/1.3611461 Search in Google Scholar

19. Almendral P, Mancha PJ, Roberto D. Feasibility of a simple method of hybrid collimation for megavoltage grid therapy. Medical Physics. 2013;40(5):051712. https://doi.org/10.1118/1.480190210.1118/1.480190223635260 Search in Google Scholar

20. Zhang X, Penagaricano J, Yan Y, et al. Spatially fractionated radiotherapy (GRID) using helical tomotherapy. Journal of Applied Clinical Medical Physics. 2016;17(1). https://doi.org/10.1120/jacmp.v17i1.593410.1120/jacmp.v17i1.5934569019426894367 Search in Google Scholar

21. Zhang X, Penagaricano J, Yan Y, et al. Application of spatially fractionated radiation (GRID) to helical tomotherapy using a novel TOMOGRID template. Technology in Cancer Research & Treatment. 2016;15(1):91-100. https://doi.org/10.7785/tcrtexpress.2013.60026110.7785/tcrtexpress.2013.60026124000988 Search in Google Scholar

22. Narayanasamy G, Zhang X, Meigooni A, et al. Therapeutic benefits in grid irradiation on Tomotherapy for bulky, radiation-resistant tumors. Acta Oncologica. 2017;56(8):1043-1047. https://doi.org/10.1080/0284186X.2017.129921910.1080/0284186X.2017.129921928270018 Search in Google Scholar

23. Wu X, Wright J, Gupta S, Pollack A. On modern technical approaches of three-dimensional high-dose lattice radiotherapy (LRT). Cureus. 2010;2(3). https://doi.org/10.7759/cureus.910.7759/cureus.9 Search in Google Scholar

24. Amendola BE, Perez N, Wu X, et al. Lattice radiotherapy with rapidarc for treatment of gynecological tumors: dosimetric and early clinical evaluations. Cureus. 2010;2(9). https://doi.org/10.7759/cureus.1510.7759/cureus.15 Search in Google Scholar

25. Amendola BE, Perez NC, Wu X, Suarez JMB, Lu JJ, Amendola M. Improved outcome of treating locally advanced lung cancer with the use of Lattice Radiotherapy (LRT): A case report. Clinical and Translational Radiation Oncology. 2018;9:68-71. https://doi.org/10.1016/j.ctro.2018.01.00310.1016/j.ctro.2018.01.003586268329594253 Search in Google Scholar

26. Jin J-Y, Zhao B, Kaminski JM, et al. A MLC-based inversely optimized 3D spatially fractionated grid radiotherapy technique. Radiotherapy and Oncology. 2015;117(3):483-486. https://doi.org/10.1016/j.radonc.2015.07.04710.1016/j.radonc.2015.07.04726277434 Search in Google Scholar

27. Schültke E, Balosso J, Breslin T, et al. Microbeam radiation therapy-grid therapy and beyond: a clinical perspective. The British Journal of Radiology. 2017;90(1078):20170073. https://doi.org/10.1259/bjr.2017007310.1259/bjr.20170073585335028749174 Search in Google Scholar

28. Slatkin DN, Spanne P, Dilmanian F, Sandborg M. Microbeam radiation therapy. Medical Physics. 1992;19(6):1395-1400. https://doi.org/10.1118/1.59677110.1118/1.5967711461201 Search in Google Scholar

29. Grotzer M, Schültke E, Bräuer-Krisch E, Laissue J. Microbeam radiation therapy: clinical perspectives. Physica Medica. 2015;31(6):564-567. https://doi.org/10.1016/j.ejmp.2015.02.01110.1016/j.ejmp.2015.02.01125773883 Search in Google Scholar

30. Slatkin D, Spanne P, Dilmanian F, Gebbers J, Laissue J. Subacute neuropathological effects of microplanar beams of x-rays from a synchrotron wiggler. Proceedings of the National Academy of Sciences. 1995;92(19):8783-8787. https://doi.org/10.1073/pnas.92.19.878310.1073/pnas.92.19.8783410517568017 Search in Google Scholar

31. Keivan H, Shahbazi-Gahrouei D, Shanei A, Amouheidari A. Assessment of imprecise small photon beam modeling by two treatment planning system Algorithms. Journal of Medical Signals and Sensors. 2018;8(1):39. https://doi.org/10.4103/jmss.JMSS_28_1710.4103/jmss.JMSS_28_17 Search in Google Scholar

32. Keivan H, Shahbazi-Gahrouei D, Shanei A. Evaluation of dosimetric characteristics of diodes and ionization chambers in small megavoltage photon field dosimetry. International Journal of Radiation Research. 2018;16(3):311-321. Search in Google Scholar

33. Wu X, Ahmed M, Pollack A. On modern technical approaches of 3D high-dose lattice radiotherapy (LRT). Int J Radiat Oncol Biol Phys. 2009;75(3):S723. https://doi.org/10.1016/j.ijrobp.2009.07.164710.1016/j.ijrobp.2009.07.1647 Search in Google Scholar

34. Nobah A, Mohiuddin M, Devic S, Moftah B. Effective spatially fractionated GRID radiation treatment planning for a passive grid block. The British Journal of Radiology. 2015;88(1045):20140363. https://doi.org/10.1259/bjr.2014036310.1259/bjr.20140363427737625382164 Search in Google Scholar

35. Costlow HN, Zhang H, Das IJ. A treatment planning approach to spatially fractionated megavoltage grid therapy for bulky lung cancer. Medical Dosimetry. 2014;39(3):218-226. https://doi.org/10.1016/j.meddos.2014.02.00410.1016/j.meddos.2014.02.00424833301 Search in Google Scholar

36. Chegeni N, Karimi AH, Jabbari I, Arvandi S. Photoneutron dose estimation in GRID therapy using an anthropomorphic phantom: A monte carlo study. Journal of Medical Signals and Sensors. 2018;8(3):175. https://doi.org/10.4103/jmss.JMSS_13_1810.4103/jmss.JMSS_13_18611631930181966 Search in Google Scholar

37. Wang X, Charlton MA, Esquivel C, Eng TY, Li Y, Papanikolaou N. Measurement of neutron dose equivalent outside and inside of the treatment vault of GRID therapy. Medical Physics. 2013;40(9):093901. https://doi.org/10.1118/1.481665310.1118/1.4816653 Search in Google Scholar

38. Karimi AH, Brkić H, Shahbazi-Gahrouei D, Haghighi SB, Jabbari I. Essential considerations for accurate evaluation of photoneutron contamination in Radiotherapy. Applied Radiation and Isotopes. 2019;145:24-31. https://doi.org/10.1016/j.apradiso.2018.12.00710.1016/j.apradiso.2018.12.007 Search in Google Scholar

39. Khosravi M, Shahbazi-Gahrouei D, Jabbari K, et al. Photoneutron contamination from an 18 MV Saturne medical linear accelerator in the treatment room. Radiation Protection Dosimetry. 2013;156(3):356-363. https://doi.org/10.1093/rpd/nct07810.1093/rpd/nct078 Search in Google Scholar

40. Tajiki S, Gholami S, Esfahani M, et al. Photon and photon-neutron experimental dosimetry in Grid therapy with 18 MV photon beams. Journal of Radiotherapy in Practice.1-7. https://doi.org/10.1017/S146039692000065510.1017/S1460396920000655 Search in Google Scholar

41. Hopewell JW, Trott K-R. Volume effects in radiobiology as applied to radiotherapy. Radiotherapy and Oncology. 2000;56(3):283-288. https://doi.org/10.1016/S0167-8140(00)00236-X10.1016/S0167-8140(00)00236-X Search in Google Scholar

42. Marks H. Clinical experience with irradiation through a GRID. Radiology. 1952;58(3):338-342. https://doi.org/10.1148/58.3.33810.1148/58.3.338 Search in Google Scholar

43. Reiff JE, Huq MS, Mohiuddin M, Suntharalingam N. Dosimetric properties of megavoltage grid therapy. Int J Radiat Oncol Biol Phys. 1995;33(4):937-942. https://doi.org/10.1016/0360-3016(95)00114-310.1016/0360-3016(95)00114-3 Search in Google Scholar

44. Huhn JL, Regine WF, Valentino JP, Meigooni AS, Kudrimoti M, Mohiuddin M. Spatially fractionated GRID radiation treatment of advanced neck disease associated with head and neck cancer. Technology in Cancer Research & Treatment. 2006;5(6):607-612. https://doi.org/10.1177/15330346060050060810.1177/15330346060050060817121437 Search in Google Scholar

45. Asur RS, Sharma S, Chang C-W, et al. Spatially fractionated radiation induces cytotoxicity and changes in gene expression in bystander and radiation adjacent murine carcinoma cells. Radiation Research. 2012;177(6):751-765. https://doi.org/10.1667/RR2780.110.1667/RR2780.1 Search in Google Scholar

46. Mothersill C, Rusin A, Fernandez-Palomo C, Seymour C. History of bystander effects research 1905-present; what is in a name? International Journal of Radiation Biology. 2018;94(8):696-707. https://doi.org/10.1080/09553002.2017.139843610.1080/09553002.2017.139843629095061 Search in Google Scholar

47. Sathishkumar S, Dey S, Meigooni AS, et al. The impact of TNF-α induction on therapeutic efficacy following high dose spatially fractionated (GRID) radiation. Technology in Cancer Research & Treatment. 2002;1(2):141-147. https://doi.org/10.1177/15330346020010020710.1177/15330346020010020712622521 Search in Google Scholar

48. Desai S, Kobayashi A, Konishi T, Oikawa M, Pandey BN. Damaging and protective bystander cross-talk between human lung cancer and normal cells after proton microbeam irradiation. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis. 2014;763:39-44. https://doi.org/10.1016/j.mrfmmm.2014.03.00410.1016/j.mrfmmm.2014.03.00424680692 Search in Google Scholar

49. Sathishkumar S, Boyanovski B, Karakashian A, et al. Elevated sphingomyelinase activity and ceramide concentration in serum of patients undergoing high dose spatially fractionated radiation treatment: implications for endothelial apoptosis. Cancer Biology & Therapy. 2005;4(9):979-986. https://doi.org/10.4161/cbt.4.9.191510.4161/cbt.4.9.191516096366 Search in Google Scholar

50. Kanagavelu S, Gupta S, Wu X, et al. In vivo effects of lattice radiation therapy on local and distant lung cancer: potential role of immunomodulation. Radiat Res. 2014;182(2):149-162. https://doi.org/10.1667/RR3819.110.1667/RR3819.1767088325036982 Search in Google Scholar

51. Manda K, Glasow A, Paape D, Hildebrandt G. Effects of ionizing radiation on the immune system with special emphasis on the interaction of dendritic and T cells. Frontiers in Oncology. 2012;2:102. https://doi.org/10.3389/fonc.2012.0010210.3389/fonc.2012.00102342684222937525 Search in Google Scholar

52. Lugade AA, Moran JP, Gerber SA, Rose RC, Frelinger JG, Lord EM. Local radiation therapy of B16 melanoma tumors increases the generation of tumor antigen-specific effector cells that traffic to the tumor. The Journal of Immunology. 2005;174(12):7516-7523. https://doi.org/10.4049/jimmunol.174.12.751610.4049/jimmunol.174.12.751615944250 Search in Google Scholar

53. Lee Y, Auh SL, Wang Y, et al. Therapeutic effects of ablative radiation on local tumor require CD8+ T cells: changing strategies for cancer treatment. Blood. 2009;114(3):589-595. https://doi.org/10.1182/blood-2009-02-20687010.1182/blood-2009-02-206870271347219349616 Search in Google Scholar

54. Edwards J, Shah P, Huhn J, et al. Definitive GRID and fractionated radiation in bulky head and neck cancer associated with low rates of distant metastasis. Int J Radiat Oncol Biol Phys. 2015;93(3):E334. https://doi.org/10.1016/j.ijrobp.2015.07.139910.1016/j.ijrobp.2015.07.1399 Search in Google Scholar

55. Gupta S, Zagurovskaya M, Wu X, Sathishkumar S, Awan S, Mohiuddin M. Spatially Fractionated Grid High-dose radiation-induced tumor regression in A549 lung adenocarcinoma xenografts: cytokines and ceramide regulators balance in abscopal phenomena. Sylvester Comprehensive Cancer Center. 2014;20. Search in Google Scholar

56. Griffin RJ, Koonce NA, Dings RPM, et al. Microbeam radiation therapy alters vascular architecture and tumor oxygenation and is enhanced by a galectin-1 targeted anti-angiogenic peptide. Radiation Research. 2012;177(6):804-812. https://doi.org/10.1667/RR2784.110.1667/RR2784.1 Search in Google Scholar

57. Peters ME, Shareef MM, Gupta S, et al. Potential utilization of bystander/abscopal-mediated signal transduction events in the treatment of solid tumors. Current Signal Transduction Therapy. 2007;2(2):129-143. https://doi.org/10.2174/15743620778061950910.2174/157436207780619509 Search in Google Scholar

58. Billena C, Khan AJ. A current review of spatial fractionation: back to the future? Int J Radiat Oncol Biol Phys. 2019;104(1):177-187. https://doi.org/10.1016/j.ijrobp.2019.01.07310.1016/j.ijrobp.2019.01.073744336230684666 Search in Google Scholar

59. Kudrimoti M, Mohiuddin M, Ahmed M, et al. Use of high dose spatially fractionated radiation (GRID therapy) in management of large, poor prognostic stage III (> 10cms) soft tissue sarcomas. Int J Radiat Oncol Biol Phys. 2004;60(1):S575. https://doi.org/10.1016/j.ijrobp.2004.07.56410.1016/j.ijrobp.2004.07.564 Search in Google Scholar

60. Somaiah N, Warrington J, Taylor H, Ahmad R, Tait D, Glees J. High dose spatially fractionated radiotherapy (SFR) using a megavoltage GRID in advanced lung tumors: Preliminary experience in UK. Int J Radiat Oncol Biol Phys. 2008;72(1):S490. https://doi.org/10.1016/j.ijrobp.2008.06.143910.1016/j.ijrobp.2008.06.1439 Search in Google Scholar

61. Suarez JMB, Amendola BE, Perez N, Amendola M, Wu X. The use of lattice radiation therapy (LRT) in the treatment of bulky tumors: a case report of a large metastatic mixed Mullerian ovarian tumor. Cureus. 2015;7(11). Search in Google Scholar

62. Amendola BE, Perez NC, Wu X, Amendola MA, Qureshi IZ. Safety and efficacy of lattice radiotherapy in voluminous non-small cell lung cancer. Cureus. 2019;11(3). https://doi.org/10.7759/cureus.426310.7759/cureus.4263651997331139522 Search in Google Scholar

63. Choi JI, Daniels J, Cohen D, Li Y, Ha CS, Eng TY. Clinical Outcomes of Spatially Fractionated GRID Radiotherapy in the Treatment of Bulky Tumors of the Head and Neck. Cureus. 2019;11(5). https://doi.org/10.7759/cureus.463710.7759/cureus.4637662399831312563 Search in Google Scholar

64. Niemierko A. Reporting and analyzing dose distributions: a concept of equivalent uniform dose. Medical Physics. 1997;24(1):103-110. https://doi.org/10.1118/1.59806310.1118/1.5980639029544 Search in Google Scholar

65. Gholami S, Nedaie HA, Longo F, Ay MR, Wright S, Meigooni AS. Is grid therapy useful for all tumors and every grid block design? Journal of Applied Clinical Medical Physics. 2016;17(2). https://doi.org/10.1120/jacmp.v17i2.601510.1120/jacmp.v17i2.6015587494427074484 Search in Google Scholar

66. Zhang H, Zhong H, Barth RF, Cao M, Das IJ. Impact of dose size in single fraction spatially fractionated (grid) radiotherapy for melanoma. Medical physics. 2014;41(2):021727. https://doi.org/10.1118/1.486283710.1118/1.486283724506618 Search in Google Scholar

67. Naqvi SA, Mohiuddin MM, Ha JK, Regine WF. Effects of tumor motion in GRID therapy. Medical physics. 2008;35(10):4435-4442. https://doi.org/10.1118/1.297753810.1118/1.297753818975690 Search in Google Scholar

68. Guerrero M, Li XA. Extending the linear-quadratic model for large fraction doses pertinent to stereotactic radiotherapy. Physics in Medicine & Biology. 2004;49(20):4825. https://doi.org/10.1088/0031-9155/49/20/01210.1088/0031-9155/49/20/01215566178 Search in Google Scholar

69. Ekstrand KE. The Hug-Kellerer equation as the universal cell survival curve. Physics in Medicine & Biology. 2010;55(10):N267. https://doi.org/10.1088/0031-9155/55/10/N0110.1088/0031-9155/55/10/N0120413830 Search in Google Scholar

70. Suchowerska N, Ebert MA, Zhang M, Jackson M. In vitro response of tumour cells to non-uniform irradiation. Physics in Medicine & Biology. 2005;50(13):3041. https://doi.org/10.1088/0031-9155/50/13/00510.1088/0031-9155/50/13/00515972979 Search in Google Scholar

71. Butterworth KT, McGarry CK, Trainor C, O’Sullivan JM, Hounsell AR, Prise KM. Out-of-field cell survival following exposure to intensity-modulated radiation fields. Int J Radiat Oncol Biol Phys. 2011;79(5):1516-1522. https://doi.org/10.1016/j.ijrobp.2010.11.03410.1016/j.ijrobp.2010.11.034306120321277116 Search in Google Scholar

72. Butterworth KT, McGarry CK, Trainor C, et al. Dose, dose-rate and field size effects on cell survival following exposure to nonuniform radiation fields. Physics in Medicine & Biology. 2012;57(10):3197. https://doi.org/10.1088/0031-9155/57/10/319710.1088/0031-9155/57/10/319722546687 Search in Google Scholar

73. Peng V, Suchowerska N, Rogers L, Claridge Mackonis E, Oakes S, McKenzie DR. Grid therapy using high definition multileaf collimators: realizing benefits of the bystander effect. Acta Oncologica. 2017;56(8):1048-1059. https://doi.org/10.1080/0284186X.2017.129993910.1080/0284186X.2017.129993928303745 Search in Google Scholar

74. McMahon SJ, Butterworth KT, Trainor C, et al. A kinetic-based model of radiation-induced intercellular signalling. PloS one. 2013;8(1):e54526. https://doi.org/10.1371/journal.pone.005452610.1371/journal.pone.0054526355185223349919 Search in Google Scholar

75. Butterworth KT, Ghita M, McMahon SJ, et al. Modelling responses to spatially fractionated radiation fields using preclinical image-guided radiotherapy. The British Journal of Radiology. 2017;90(1069):20160485. https://doi.org/10.1259/bjr.2016048510.1259/bjr.20160485560502527557131 Search in Google Scholar

eISSN:
1898-0309
Język:
Angielski
Częstotliwość wydawania:
4 razy w roku
Dziedziny czasopisma:
Medicine, Biomedical Engineering, Physics, Technical and Applied Physics, Medical Physics