Zacytuj

This paper presents a study of the impact of clicks, and murmurs on cardiac sound S1, and S2, and the measure of severity degree through synchronization degree between frequencies, using bispectral analysis. The algorithm is applied on three groups of Phonocardiogram (PCG) signal: group A represents PCG signals having a morphology similar to that of the normal PCG signal without click or murmur, group B represents PCG signals with a click (reduced murmur), and group C represent PCG signals with murmurs.

The proposed algorithm permits us to evaluate and quantify the relationship between the two sounds S1 and S2 on one hand and between the two sounds, click and murmur on the other hand. The obtained results show that the clicks and murmurs can affect both the heart sounds, and vice versa. This study shows that the heart works in perfect harmony and that the frequencies of sounds S1, S2, clicks, and murmurs are not accidentally generated; but they are generated by the same generator system. It might also suggest that one of the obtained frequencies causes the others.

The proposed algorithm permits us also to determine the synchronization degree. It shows high values in group C; indicating high severity degrees, low values for group B, and zero in group A.

The algorithm is compared to Short-Time Fourier Transform (STFT) and continuous wavelet transform (CWT) analysis. Although the STFT can provide correctly the time, it can’t distinguish between the internal components of sounds S1 and S2, which are successfully determined by CWT, which, in turn, cannot find the relationship between them.

The algorithm was also evaluated and compared to the energetic ratio. the obtained results show very satisfactory results and very good discrimination between the three groups.

We can conclude that the three algorithms (STFT, CWT, and bispectral analysis) are complementary to facilitate a good approach and to better understand the cardiac sounds

eISSN:
1898-0309
Język:
Angielski
Częstotliwość wydawania:
4 razy w roku
Dziedziny czasopisma:
Medicine, Biomedical Engineering, Physics, Technical and Applied Physics, Medical Physics