Zacytuj

1. Schoknecht G. Description of radiation fields by separation of primary and scatter radiation. I. The tissue–air ratio in 60Co fields. Strahlentherapie. 1967:132:516-528. Search in Google Scholar

2. Batho HF. Lung corrections in Cobalt 60 Beam Therapy. J Can Assoc Radiol. 1964;15:79-83. Search in Google Scholar

3. Oelkfe U, Scholz C. Dose Calculation Algorithms. In: Schlegel W., Bortfeld T., Grosu AL. (eds) New Technologies in Radiation Oncology. Medical Radiology (Radiation Oncology). Springer, Berlin, Heidelberg. 2006. https://doi.org/10.1007/3-540-29999-8_1510.1007/3-540-29999-8_15 Search in Google Scholar

4. Siebers JV, Keall PJ, Nahum AE, Mohan R. Converting absorbed dose to medium to absorbed dose to water for Monte Carlo based photon beam dose calculations. Phys Med Biol. 2000;45(4):983-95. https://doi.org/10.1088/0031-9155/45/4/31310.1088/0031-9155/45/4/313 Search in Google Scholar

5. Almond PR, Biggs PJ, Coursey BM, et al. AAPM’s TG-51 protocol for clinical reference dosimetry of high-energy photon and electron beams. Med Phys. 1999;26(9):1847-1870. https://doi.org/10.1118/1.59869110.1118/1.598691 Search in Google Scholar

6. Uzan J, Nahum AE. Radiobiologically guided optimisation of the prescription dose and fractionation scheme in radiotherapy using BioSuite. Br J Radiol. 2012;85(1017):1279-1286. https://doi.org/10.1259/bjr/2047656710.1259/bjr/20476567 Search in Google Scholar

7. Lyman JT. Complication probability as assessed from dose-volume histograms. Radiat Res Suppl. 1985;8:S13-S19. https://doi.org/10.2307/358350610.2307/3583506 Search in Google Scholar

8. Gulliford SL, Partridge M, Sydes MR, et al. Parameters for the Lyman Kutcher Burman (LKB) model of Normal Tissue Complication Probability (NTCP) for specific rectal complications observed in clinical practise. Radiother Oncol. 2012;102(3):347-351. https://doi.org/10.1016/j.radonc.2011.10.02210.1016/j.radonc.2011.10.022 Search in Google Scholar

9. Burman C, Kutcher GJ, Emami B, Goiten M. Fitting of normal tissue tolerance data to an analytic function. Int J Radiat Oncol Biol Phys. 1991;21:123-35. https://doi.org/10.1016/0360-3016(91)90172-Z10.1016/0360-3016(91)90172-Z Search in Google Scholar

10. Lutkenhaus LJ, Vestergaard A, Bel A, et al. A biological modeling based comparison of two strategies for adaptive radiotherapy of urinary bladder cancer. Acta Oncologica. 2016;55(8):1009-1015. :8, 1009-1015. https://doi.org/10.3109/0284186X.2016.115154810.3109/0284186X.2016.115154827100215 Search in Google Scholar

11. Chetty IJ, Curran B, Cygler JEet al. Report of the AAPM Task Group No.105: Issues associated with clinical implementation of Monte Carlo-based photon and electron external beam treatment planning. Med Phys. 2007;34:4818-53. https://doi.org/10.1118/1.279584210.1118/1.279584218196810 Search in Google Scholar

12. Dogan N, Siebers JV, Keall PJ. Clinical Comparison of Head and Neck and Prostate IMRT Plans Using Absorbed Dose to Medium and Absorbed Dose to Water. Phys Med Biol. 2006;51(19):4967-4980. https://doi.org/10.1088/0031-9155/51/19/01510.1088/0031-9155/51/19/01516985281 Search in Google Scholar

13. Siebers JV, Keall PJ, Nahum AE, Mohan R. Converting Absorbed Dose to Medium to Absorbed Dose to Water for Monte Carlo Based Photon Beam Dose Calculation. Phys Med Biol. 2000;45(4):983-995. https://doi.org/10.1088/0031-9155/45/4/31310.1088/0031-9155/45/4/31310795986 Search in Google Scholar

14. Chen L, Huang B, Huang X, et al. Clinical evaluation for the difference of absorbed doses calculated to medium and calculated to water by Monte Carlo method. Radiat Oncol. 2018;13:137. https://doi.org/10.1186/s13014-018-1081-310.1186/s13014-018-1081-3606414430055661 Search in Google Scholar

15. Gopal SK, Dash PC. Dose-to-medium vs. dose-to-water: Dosimetric evaluation of head and neck VMAT cases using Monaco treatment planning system. Int J Cancer Ther Oncol. 2016;4(4):4416. https://doi.org/10.14319/ijcto.44.16 Search in Google Scholar

16. Usmani M, Masai N, Oh R, et al. Comparison of Absorbed Dose to Medium and Absorbed Dose to Water for Spine IMRT Plans Using a Commercial Monte Carlo Treatment Planning System. International Journal of Medical Physics, Clinical Engineering and Radiation Oncology. 2014;3(1):60-66. http://dx.doi.org/10.4236/ijmpcero.2014.3101010.4236/ijmpcero.2014.31010 Search in Google Scholar

17. Walters BRB, Kramer R, Kawrakow I. Dose to medium versus dose to water as an estimator of dose to sensitive skeletal tissue. Phys Med Biol. 2010;55:4535. https://doi.org/10.1088/0031-9155/55/16/S0810.1088/0031-9155/55/16/S0820668336 Search in Google Scholar

18. Fippel M, Nüsslin F. Comments on ‘Converting Absorbed Dose to Medium to Absorbed Dose to Water for Monte Carlo Based Photon Beam Dose Calculations. Phys Med Biol. 2007;45(8):L17-L19. https://doi.org/10.1088/0031-9155/45/8/10110.1088/0031-9155/45/8/10110958207 Search in Google Scholar

19. Ma CM, Mok E, Kapur A, et al. Clinical Implementation of a Monte Carlo Treatment Planning System. Med Phys. 1999;26(10):2133-2143. https://doi.org/10.1118/1.59872910.1118/1.59872910535630 Search in Google Scholar

20. Keall P. Dm Rather than Dw Should Be Used in Monte Carlo Treatment Planning. Against the Proposition. Med Phys. 2002;29(5):923-924. https://doi.org/10.1118/1.147313710.1118/1.147313712033589 Search in Google Scholar

eISSN:
1898-0309
Język:
Angielski
Częstotliwość wydawania:
4 razy w roku
Dziedziny czasopisma:
Medicine, Biomedical Engineering, Physics, Technical and Applied Physics, Medical Physics