Otwarty dostęp

Response surface methodology approach for optimization of biosorption process for removal of Hg(II) ions by immobilized Algal biomass Coelastrella sp.


Zacytuj

Jabbar, N.M., Alardhi, S.M., Al-Jadir, T., & Dhahad, H.A. (2023). Contaminants removal from real refinery wastewater associated with energy generation in microbial fuel cell. J. Ecol. Eng. 24(1), 107–114. DOI: 10.12911/22998933/15681. Search in Google Scholar

Alardhi, S.M., Ali, N.S., Cata Saady, N.M., Zendehboudi, S., Salih, I.K., Alrubaye, J.M. & Albayati, T.M. (2024). Separation techniques in different configurations of hybrid systems via synergetic adsorption and membrane processes for water treatment: A review, J. Ind. Engin.Chem. 130, 91–104. DOI: 10.1016/j.jiec.2023.09.051. Search in Google Scholar

Fiyadh, S.S., Alardhi, S.M., Al Omar, M., Aljumaily, M.M., Al Saadi, M.A., Fayaed, S.S., Ahmed, S.N., Salman, A.D., Abdalsalm, A.H., Jabbar, N.M. & El-Shafi, A. (2023). A comprehensive review on modelling the adsorption process for heavy metal removal from waste water using artificial neural network technique, J. Heliyon. 9(4). DOI: 10.1016/j.heliyon.2023.e15455. Search in Google Scholar

Al-Jadir, T., Alardhi, S.M., Alheety, M.A., Najim, A.A., Salih, I.K., Al-Furaiji, M. & Alsalhy, Q.F. (2022). Fabrication and characterization of polyphenylsulfone/titanium oxide nanocomposite membranes for oily wastewater treatment, J. Ecol. Eng. 23(12), 1–13. DOI: 10.12911/22998993/154770. Search in Google Scholar

Dawood Salman, A., Alardhi, S.M., AlJaberi, F.Y., Jalhoom, M.G., Le, P.C., Al-Humairi, S.T., Adelikhah, M., Farkas, G. & Abdulhady Jaber, A. (2023). Defining the optimal conditions using FFNNs and NARX neural networks for modelling the extraction of Sc from aqueous solution by Cryptand-2.2.1 and Cryptand-2.1.1, J. Heliyon. 9(11). DOI: 10.1016/j.heliyon.2023.e21041. Search in Google Scholar

Alardhi, S.M., Aljaberi, F.Y., Kadhim, W.A., Jadir, T.A., Alsaedi, L.M., Jabbar, N. M., Almarmadh, A., Komsh, G.G. & Adnan, M. (2023). Investigating the capability of MCM-41 nanoparticle for COD removal from Iraqi petroleum refinery wastewater, AIP Conference Proceedings. 2820(1). DOI: 10.1063/5.0151096 Search in Google Scholar

Al-Jadir, T., Alardhi, S.M., Al-Sheikh, F., Jaber, A.A., Kadhim, W.A., Rahim, M.H. A. (2023). Modeling of lead (II) ion adsorption on multiwall carbon nanotubes using artificial neural network and Monte Carlo technique. Chem. Engin. Commun. 210(10), 1642–1658. DOI: 10.1080/00986445.2022.2129622. Search in Google Scholar

Jasim, M.A., AlJaberi, F.Y., Salman, A.D., Alardhi, S.M., Le, P.-C., Kulcsár, G. & Jakab, M. (2023). Studying the effect of reactor design on the electrocoagulation treatment performance of oily wastewater. Heliyon, 9(7), e17794. DOI: 10.1016/j.heliyon.2023.e17794. Search in Google Scholar

Rio, S. & Delebarre, A. (2003). Removal of mercury in aqueous solution by fluidized bed plant fly ash. Fuel, 82(2), 153–159. DOI: 10.1016/S0016-2361(02)00237-5. Search in Google Scholar

Gworek, B., Dmuchowski, W., Baczewska, A.H., Brągoszewska, P., Bemowska-Kałabun, O., Wrzosek-Jakubowska, J. (2017). Air contamination by mercury, emissions and transformations—a review. Water, Air, & Soil Pollution, 228, 1–31. DOI: 10.1007/s11270-017-3311-y. Search in Google Scholar

Hassan, S.S., Awwad, N.S. & Aboterika, A.H. (2008). Removal of mercury (II) from wastewater using camel bone charcoal. J. Hazard Mater. 154(1-3), 992–997. DOI: 10.1016/j.jhazmat.2007.11.003. Search in Google Scholar

Loureiro, L., Machado, L., Geada, P., Vasconcelos, V., Vicente, A.A. (2023). Evaluation of efficiency of disruption methods for Coelastrella sp. in order to obtain high yields of biochemical compounds release. Algal Res. 73, 103158. DOI: 10.1016/j.algal.2023.103158. Search in Google Scholar

Liu, H.-Y., Yu, Y., Yu, N.-N., Ding, Y.-F., Chen, J.-M. & Chen, D.-Z. (2022). Airlift two-phase partitioning bioreactor for dichloromethane removal: Silicone rubber stimulated biodegradation and its auto-circulation. J. Environ. Manag. 319, 115610. DOI: 10.1016/j.jenvman.2022.115610. Search in Google Scholar

Goecke, F., Noda, J., Paliocha, M. & Gislerød, H.R. (2020). Revision of Coelastrella (Scenedesmaceae, Chlorophyta) and first register of this green coccoid microalga for continental Norway. World J. Microbiol. Biotech. 36(10), 149. DOI: 10.1007/s11274-020-02897-0. Search in Google Scholar

Mtaki, K., Kyewalyanga, M.S. & Mtolera, M.S. (2021). Supplementing wastewater with NPK fertilizer as a cheap source of nutrients in cultivating live food (Chlorella vulgaris). Annals Microbiol. 71(7), 1-13. DOI: 10.1186/s13213-020-01618-0. Search in Google Scholar

Alardhi, S.M., Abdalsalam, A.H., Ati, A.A., Abdulkareem, M.H., Ramadhan, A.A., Taki, M.M. & Abbas, Z.Y. (2023). Fabrication of polyaniline/zinc oxide nanocomposites: synthesis, characterization and adsorption of methylene orange. Polym. Bull. 81, 1–35. DOI: 10.21203/rs.3.rs-1785804/v2. Search in Google Scholar

Alardhi, S.M., Fiyadh, S.S., Salman, A.D. & Adelikhah, M. (2023). Prediction of methyl orange dye (MO) adsorption using activated carbon with an artificial neural network optimization modeling. Heliyon, 9(1). DOI: 10.1016/j.heliyon.2023.e12888. Search in Google Scholar

Al-Najar, J.A., Al-Humairi, S.T., Lutfee, T., Balakrishnan, D., Veza, I., Soudagar, M. E. M. & Fattah, I.M. (2023). Cost-effective natural adsorbents for remediation of oil-contaminated water. Water, 15(6), 1186. DOI:10.3390/w15061186. Search in Google Scholar

Remedhan, S.T. (2020). Experimental investigation of thermodynamics, kinetics, and equilibrium of nickel Ion removal from wastewater using zinc oxide nanoparticles as the adsorbent. Engin. Technol. J. 38(7), 1047–1061. DOI: 10.30684/etj.v38i7A.60. Search in Google Scholar

Yetilmezsoy, K., Demirel, S. & Vanderbei, R.J. (2009). Response surface modeling of Pb (II) removal from aqueous solution by Pistacia vera L.: Box–Behnken experimental design. J. Hazard Mater, 171(1-3), 551–562. DOI: 10.1016/j.jhazmat.2009.06.035. Search in Google Scholar

Kumar, R., Singh, R., Kumar, N., Bishnoi, K. & Bishnoi, N.R. (2009). Response surface methodology approach for optimization of biosorption process for removal of Cr (VI), Ni (II) and Zn (II) ions by immobilized bacterial biomass sp. Bacillus brevis. Chem. Engin. J. 146(3), 401–407. DOI: 10.1016/j.cej.2008.06.020. Search in Google Scholar

Singh, K.P., Singh, A.K., Singh, U.V. & Verma, P. (2012). Optimizing removal of ibuprofen from water by magnetic nanocomposite using Box–Behnken design. Environ. Sci. Pollut. Res. 19, 724–738. DOI: 10.1007/s11356-011-0611-4. Search in Google Scholar

Reddy, D.H.K. & Lee, S-M. (2013). Three-dimensional porous spinel ferrite as an adsorbent for Pb (II) removal from aqueous solutions. Ind. Eng. Chem. Res. 52(45), 15789–15800. DOI: 10.1021/ie303359e. Search in Google Scholar

Ahmad, R., Kumar, R. & Laskar, M.A. (2013). Adsorptive removal of Pb2+ form aqueous solution by macrocyclic calix [4] naphthalene: kinetic, thermodynamic, and isotherm analysis. Environ. Sci. Pollut. Res. 20, 219–226. DOI: 10.1007/s11356-012-0838-8. Search in Google Scholar

Liu, D., Li, Z., Li, W., Zhong, Z., Xu, J., Ren, J. & Ma, Z. (2013). Adsorption behavior of heavy metal ions from aqueous solution by soy protein hollow microspheres. Ind. Eng. Chem. Res. 52(32), 11036–11044. DOI: 10.1021/ie401092f. Search in Google Scholar

Wu, D., Zhou, J. & Li, Y. (2009). Effect of the sulfidation process on the mechanical properties of a CoMoP/Al2O3 hydrotreating catalyst. Chem. Engin. Sci. 64(2), 198–206. DOI: 10.1016/j.ces.2008.10.014. Search in Google Scholar

Almeida, C., Debacher, N., Downs, A., Cottet, L. & Mello, C. (2009). Removal of methylene blue from colored effluents by adsorption on montmorillonite clay. J. Colloïd Interf. Sci. 332(1), 46–53. DOI: 10.1016/j.jcis.2008.12.012. Search in Google Scholar

Fertu, D.I., Bulgariu, L. & Gavrilescu, M. (2022). Modeling and optimization of heavy metals biosorption by low-cost sorbents using response surface methodology. Processes, 10(3), 523. DOI: 10.3390/pr10030523. Search in Google Scholar

Igberase, E., Osifo, P. & Ofomaja, A. (2017). The adsorption of Pb, Zn, Cu, Ni, and Cd by modified ligand in a single component aqueous solution: equilibrium, kinetic, thermodynamic, and desorption studies. Internat. J. Analyt. Chem. 2017. DOI: 10.1155/2017/6150209. Search in Google Scholar

Mohammed, A.A. & Isra’a, S.S. (2018). Bentonite coated with magnetite Fe3O4 nanoparticles as a novel adsorbent for copper (II) ions removal from water/wastewater. Environ. Technol. & Innovat. 10, 162–174. DOI: 10.1016/j.eti.2018.02.005. Search in Google Scholar

Khan, M.A., Kim, S.-w., Rao, R.A.K., Abou-Shanab, R., Bhatnagar, A., Song, H. & Jeon, B.-H. (2010). Adsorption studies of dichloromethane on some commercially available GACs: effect of kinetics, thermodynamics and competitive ions. J. Hazard. Mater. 178(1-3), 963–972. DOI: 10.1016/j.jhazmat.2010.02.032. Search in Google Scholar

Azeez, R.A. & Al-Zuhairi, F.K.I. (2022). Biosorption of dye by immobilized yeast cells on the surface of magnetic nanoparticles. Alexandria Engin. J., 61(7), 5213–5222. DOI: 10.1016/j.aej.2021.10.044. Search in Google Scholar

Langmuir, I. (1917). The constitution and fundamental properties of solids and liquids. II. Liquids. J. Amer. Chem. Soc. 39(9), 1848–1906. Search in Google Scholar

Al-Ghouti, M.A. & Da’ana, D.A. (2020). Guidelines for the use and interpretation of adsorption isotherm models: A review. J. Hazard Mater. 393, 122383. DOI: 10.1016/j.jhazmat.2020.122383. Search in Google Scholar

Wang, J. & Guo, X. (2020). Adsorption isotherm models: Classification, physical meaning, application and solving method. Chemosphere, 258, 127279. DOI: 10.1016/j.chemosphere.2020.127279. Search in Google Scholar

Dada, A., Olalekan, A., Olatunya, A. & Dada, O. (2012). Langmuir, Freundlich, Temkin and Dubinin–Radushkevich isotherms studies of equilibrium sorption of Zn2+ unto phosphoric acid modified rice husk. IOSR J. Appl. Chem. 3(1), 38–45. Search in Google Scholar

Arshadi, M., Amiri, M.J. & Mousavi, S. (2014). Kinetic, equilibrium and thermodynamic investigations of Ni (II), Cd (II), Cu (II) and Co (II) adsorption on barley straw ash. Water Res. Ind. 6, 1–17. DOI: 10.1016/j.wri.2014.06.001. Search in Google Scholar

Sağ, Y. & Aktay, Y. (2000). Mass transfer and equilibrium studies for the sorption of chromium ions onto chitin. Process Biochem. 36(1-2), 157–173. DOI: 10.1016/S0032-9592(00)00200-4. Search in Google Scholar

Yagub, M.T., Sen, T.K. & Ang, H. (2012). Equilibrium, kinetics, and thermodynamics of methylene blue adsorption by pine tree leaves. Water, Air, & Soil Pollut. 223, 5267–5282. DOI: 10.1007/s11270-012-1277-3. Search in Google Scholar

Wang, H., Xie, R., Zhang, J. & Zhao, J. (2018). Preparation and characterization of distillers’ grain based activated carbon as low cost methylene blue adsorbent: Mass transfer and equilibrium modeling. Adv. Powder Technol. 29(1), 27–35. DOI: 10.1016/j.apt.2017.09.027. Search in Google Scholar

Yao, S., Zhang, J., Shen, D., Xiao, R., Gu, S., Zhao, M. & Liang, J. (2016). Removal of Pb (II) from water by the activated carbon modified by nitric acid under microwave heating. J. Colloid Interf. Sci. 463, 118–127. DOI: 10.1016/j.jcis.2015.10.047. Search in Google Scholar

Prajapati, A.K. & Mondal, M.K. (2020). Comprehensive kinetic and mass transfer modeling for methylene blue dye adsorption onto CuO nanoparticles loaded on nanoporous activated carbon prepared from waste coconut shell. J. Molec. Liquids, 307, 112949. DOI: 10.1016/j.molliq.2020.112949. Search in Google Scholar

Shukla, S. & Skhardande, V. (1992). Column studies on metal ion removal by dyed cellulosic materials. J. Appl. Pol. Sci. 44(5), 903–910. DOI: 10.1002/app.1992.070440518. Search in Google Scholar

Yao, Y., Velpari, V. & Economy, J. (2014). Design of sulfur treated activated carbon fibers for gas phase elemental mercury removal. Fuel, 116, 560–565. DOI: 10.1016/j.fuel.2013.08.063. Search in Google Scholar

Arsuaga, J.M., Aguado, J., Arencibia, A. & López-Gutiérrez, M.S. (2014). Aqueous mercury adsorption in a fixed bed column of thiol functionalized mesoporous silica. Adsorption, 20, 311–319. DOI: 10.1007/s10450-013-9586-4. Search in Google Scholar

Oliva, J., De Pablo, J., Cortina, J.-L., Cama, J. & Ayora, C. (2011). Removal of cadmium, copper, nickel, cobalt and mercury from water by Apatite II™: Column experiments. J. Hazard. Mater. 194, 312–323. DOI: 10.1016/j.jhazmat.2011.07.104. Search in Google Scholar

Johari, K., Saman, N. & Mat, H. (2014). Adsorption enhancement of elemental mercury onto sulphur-functionalized silica gel adsorbents. Environ. Technol. 35(5), 629–636. DOI: 10.1080/09593330.2013.840321. Search in Google Scholar

Johari, K., Saman, N. & Mat, H. (2013). A comparative evaluation of mercury (II) adsorption equilibrium and kinetics onto silica gel and sulfur-functionalised silica gels adsorbents. Canadian J. Chem. Engin. 92(6), 1048–1058. DOI: 10.1002/cjce.21949. Search in Google Scholar

eISSN:
1899-4741
Język:
Angielski
Częstotliwość wydawania:
4 razy w roku
Dziedziny czasopisma:
Industrial Chemistry, Biotechnology, Chemical Engineering, Process Engineering