Otwarty dostęp

Numerical Modeling of Heat Transfer and Flow Field in a Novel Calcinator


Zacytuj

Serrano, D.P., García, R.A., Linares, M. & Gil, B. (2012). Influence of the calcination treatment on the catalytic properties of hierarchical ZSM-5. Chem. Eng. Sci. 179(1), 91–101. DOI: 10.1016/j.cattod.2011.06.029. Search in Google Scholar

Scherzer, J. (1990). Octane-enhancing, Zeolitic FCC Catalysts: Scientific and Technical Aspects. Catal. Rev. Sci. Eng. 31(3), 215–354. DOI: 10.1002/chin.199025325. Search in Google Scholar

Kunkeler, P.J., van der Waal, J.C., van Bokhoven, J.A., Koningsberger, D.C. & van Bekkum, H. (1998). The Relationship Between Calcination Procedure, Aluminum Configuration and Lewis Acidity. Chem. Eng. Sci. 180(2), 234–244. DOI: 10.1006/jcat.1998.2273. Search in Google Scholar

Da Ros, S., Barbosa-Coutinho, E., Schwaab, M., Calsavara, V., Fernandes-Machado & Nádia R.C. (2013). Modeling the effects of calcination conditions on the physical and chemical properties of transition alumina catalysts. Mater. Char. 80, 50–61. DOI: 10.1016/j.matchar.2013.03.005. Search in Google Scholar

Shahrbabaki, A.S., Kalantar, V. & Mansouri, S.H. (2023). Analytical and numerical considerations of the minimum fluidization velocity of the molybdenite particles. Mater. Mater. Mech. 10(4), 769–776. DOI: 10.1007/s40571-022-00528-z. Search in Google Scholar

Yang, L. & Farouk, B. (1997). Modeling of solid particle flow and heat transfer in rotary kiln calciners. J. Air & Waste Manage. Assn. 47(11), 1189–1196. DOI: 10.1080/10473289.1997.10464069. Search in Google Scholar

Mikulčić, H., von Berg, E., Vujanović, M., Priesching, P., Tatschl, R. & Duić, N. (2012). CFD analysis of a cement calciner for a cleaner cement production. Chem. Eng. Trans. 29, 1513–1518. DOI: 10.3303/CET1229253. Search in Google Scholar

Johansson, S., Westerberg, L.G. & Lundstrom, T.S. (2014). Gas and particle flow in a spray roaster. JAFM, 7(2), 187–196. DOI: 10.36884/jafm.7.02.20339. Search in Google Scholar

Marsh, C. (2009). CFD modelling of alumina calciner furnaces. In Seventh International Conference on CFD in the Minerals and Process Industries, Melbourne, 1-4. Search in Google Scholar

Kanellis, G., Zeneli, M., Nikolopoulos, N., Hofmann, C., Ströhle, J., Karellas, S. & Konttinen, J. (2023). CFD modelling of an indirectly heated calciner reactor, utilized for CO2 capture, in an Eulerian framework. Fuel, 346, 128251. DOI: 10.1016/j.fuel.2023.128251. Search in Google Scholar

Chilka, A.G. & Ranade, V.V. (2019). CFD modelling of almond drying in a tray dryer. Chem. Eng. Sci. 97(2), 560–572. DOI: 10.1002/cjce.23357. Search in Google Scholar

Zeneli, M., Nikolopoulos, A., Nikolopoulos, N., Grammelis, P., Karellas, S. & Kakaras, E. (2017). Simulation of the reacting flow within a pilot scale calciner by means of a three phase TFM model. Fuel Process. Technol. 162, 105–125. DOI: 10.1016/j.fuproc.2017.03.032. Search in Google Scholar

Havryliv, R. & Maystruk, V. (2017). Development of combustion model in the industrial cyclone-calciner furnace using CFD-modeling. Chem. Chem. Technol. 11(1), 71–80. DOI: 10.23939/chcht11.01.071. Search in Google Scholar

Nakhaei, M., Hessel, C.E., Wu, H., Grévain, D., Zakrzewski, S., Jensen, L.S., Glarborg P. & Dam-Johansen, K. (2018). Experimental and CPFD study of gas–solid flow in a cold pilot calciner. Powder Technol. 340, 99–115. DOI: 10.1016/j.powtec.2018.09.008. Search in Google Scholar

Xiao, J., Huang, J., Zhong, Q., Zhang, H. & Li, J. (2016). Modeling and simulation of petroleum coke calcination in pot calciner using two-fluid model. Jom, 68, 643–655. DOI: 10.1007/s11837-015-1667-2. Search in Google Scholar

Kinekar, S., Mone, S., Taqi, A., Mane, P., Gawali, B. & Vitankar, V. (2021). NOX reduction in calciner using air staging and raw meal split technology. Mat. Today, 45, 3091–3096. DOI: 10.1016/j.matpr.2020.12.143. Search in Google Scholar

Zhu, J. & Kao, H. (2021). Numerical Simulation of Co-Combustion of Pulverized Coal and Different Proportions of Refused Derived Fuel in TTF Precalciner. JRM. 9(7), 1329. DOI: 10.32604/jrm.2021.015079. Search in Google Scholar

Xu, J. & Ma, Y. (2018). Simulation Analysis of Gas-solid Two-phase Flow for Heating Catalyst in Rotary Multi-cavity Kiln. ICMT., 398(1) 012010. DOI: 10.1088/1757-899X/398/1/012010. Search in Google Scholar

Liu, X. & Jiang, J. (2004). Mass and heat transfer in a continuous plate dryer. Drying Technol. 22(7), 1621–1635. DOI: 10.1081/DRT-200025619. Search in Google Scholar

Schlünder, E.U. (1988). On the mechanism of the constant drying rate period and its relevance to diffusion controlled catalytic gas phase reactions. Chem. Eng. Sci. 43(10), 2685–2688. DOI: 10.1016/0009-2509(88)80012-5. Search in Google Scholar

Chaudhuri, B., Muzzio, F.J. & Tomassone, M.S. (2006). Modeling of heat transfer in granular flow in rotating vessels. Chem. Eng. Sci. 61(19), 6348–6360. DOI: 10.1016/j.ces.2006.05.034. Search in Google Scholar

eISSN:
1899-4741
Język:
Angielski
Częstotliwość wydawania:
4 razy w roku
Dziedziny czasopisma:
Industrial Chemistry, Biotechnology, Chemical Engineering, Process Engineering