Otwarty dostęp

Enhancement of the corrosion resistance for stainless steel 316 by applying laser shock peening


Zacytuj

Wang, Y., Wang, W., Liu, Y., Zhong, L. & Wang, J. (2011). Study of localized corrosion of 304 stainless steel under chloride solution droplets using the wire beam electrode. J. Corros. Sci., 53(9), 2963–2968. DOI: 10.1016/j.corsci.2011.05.051.Search in Google Scholar

Koushik, B.G., Van den Steen, N., Mamme, M.H., Van Ingelgem, Y. & Terryn, H. (2021). Review on modelling of corrosion under droplet electrolyte for predicting atmospheric corrosion rate. J. Mater. Sci. Technol. 62, 254–267. DOI: 10.1016/j.jmst.2020.04.061.Search in Google Scholar

Guo, M., Tang, J., Peng, C., Li, X., Wang, C., Pan, C. & Wang, Z. (2022). Effects of salts and its mixing ratio on the corrosion behavior of 316 stainless steel exposed to a simulated salt-lake atmospheric environment. Mater. Chem. Phys. 276, 125380. DOI: 10.1016/j.matchemphys.2021.125380.Search in Google Scholar

Grum, J. (2007). Comparison of Different Techniques of Laser Surface Hardening. J. Achiev. in Mater. Manufac. Engin. 24(1), 17–25.Search in Google Scholar

Xiong, Y., He, T., Guo, Z., He, H., Ren, F. & Volinsky, A.A. (2013). Effects of laser shock processing on surface microstructure and mechanical properties of ultrafine-grained high carbon steel. Mater. Sci. Engin: A, 570, 82–86. DOI: 10.1016/j. msea.2013.01.068.Search in Google Scholar

Judran, A.K., Kadhim, S.M. & Elah, H.A. (2018). Enhancement of the corrosion resistance for 6009 aluminum alloy by laser treatment. Kufa J. Eng. 9, 201–214. DOI: 10.30572/2018/kje/090215.Search in Google Scholar

Maaß, P. & Peißker, P. (2011). Handbook of hot-dip galvanization (13 Volume). John Wiley & Sons.(Eds.), Corrossion Handbook.Search in Google Scholar

Khalil, K.S. (2014). Corrosion Inhibition Measurement of Zinc in Acidic Media by Different Techniques. Unpublished M.Sc. Thesis, University of Baghdad, Baghdad, Iraq.Search in Google Scholar

Davis, J.R. (Ed.). (2001). Surface Engineering For Corrosion And Wear Resistance (1st Ed). USA, ASM international.Search in Google Scholar

Akchurin, A., Bosman, R., Lugt, P.M. & van Drogen, M. (2016). Analysis of wear particles formed in boundary-lubricated sliding contacts. Tribology letters, 63, 1–14. DOI: 10.1007/s11249-016-0701-z.Search in Google Scholar

Zhang, L., Zhang, Y.K., Lu, J.Z., Dai, F.Z., Feng, A.X., Luo, K.Y., J.S. Zhong, Q.W., Wang, M. & Qi, H. (2013). Effects of laser shock processing on electrochemical corrosion resistance of ANSI 304 stainless steel weldments after cavitation erosion. J. Corros. Sci. 66, 5–13. DOI: 10.1016/j.corsci.2012.08.034.Search in Google Scholar

Sakthivel, N. (2018). Analysis of Wear and Corrosion Properties of 316 L Stainless Steel Additively Manufactured Using Laser Engineered Net Shaping, Doctoral Dissertation, Oklahoma State University, USA.Search in Google Scholar

Yan, X., Wang, F., Deng, L., Zhang, C., Lu, Y., Nastasi, M., & Cui, B. (2018). Effect of laser shock peening on the microstructures and properties of oxide-dispersion-strengthened austenitic steels. Adv. Engin. Mater. 20(3), 1700641. DOI: 10.1002/adem.201700641.Search in Google Scholar

Pan, X., Gu, Z., Qiu, H., Feng, A. & Li, J. (2022). Study of the mechanical properties and microstructural response with laser shock peening on 40CrMo steel. Metals, 12(6), 1034.Search in Google Scholar

Lu, J., Qi, H., Luo, K., Luo, M. & Cheng, X. (2014).”Corrosion behaviour of AISI 304 stainless steel subjected to massive laser shock peening impacts with different pulse energies,” Corros. Sci. 80, 53–59. DOI: 10.3390/met12061034.Search in Google Scholar

Liu, D., Shi, Y., Liu, J. & Wen, L. (2019). Effect of laser shock peening on corrosion resistance of 316L stainless steel laser welded joint. J. Surf. Coat. Technol. 378, 124824. DOI: 10.1016/j.surfcoat.2019.07.048.Search in Google Scholar

Guan, L., Ye, Z.X., Yang, X.Y., Cai, J.M., Li, Y., Li, Y. & Wang, G. (2021). Pitting resistance of 316 stainless steel after laser shock peening: Determinants of microstructural and mechanical modifications. J. Mater. Proces. Technol. 294, 117091. DOI: 10.1016/j.jmatprotec.2021.117091.Search in Google Scholar

eISSN:
1899-4741
Język:
Angielski
Częstotliwość wydawania:
4 razy w roku
Dziedziny czasopisma:
Industrial Chemistry, Biotechnology, Chemical Engineering, Process Engineering