Otwarty dostęp

Green method of conversion of geraniol to value-added products in the presence of selected minerals


Zacytuj

Perec, A., Radomska-Zalas, A., Fajdek-Bieda, A. (2022). Modeling of High Pressure Abrasive Water Jet Cutting of Marble. Facta Universitatis, Series: Mech. Engin., 20, 145–156, DOI: 10.22190/FUME210203037P. Open DOISearch in Google Scholar

Fajdek-Bieda, A. (2021). Using Entropy-VIKOR Method in Chemical Processes Optimization. Proc. Comp. Sci., 192, 4208–4217, DOI: 10.1016/j.procs.2021.09.197. Open DOISearch in Google Scholar

Moein, M., Zarshenas, M.M. & Delnavaz, S. (2014). Chemical Composition Analysis of Rose Water Samples from Iran. Pharmac. Biol., 52, 1358–1361, DOI: 10.3109/13880209.2014.885062. Open DOISearch in Google Scholar

Fajdek-Bieda, A., Perec, A. & Radomska-Zalas, A. (2021). Orthogonal Array Approach Optimization of Catalytic Systems. Proc.Comp. Sci., 192, 4200–4207, DOI: 10.1016/j. procs.2021.09.196. Open DOISearch in Google Scholar

Hawari, H.F., Samsudin, N.M., Md Shakaff, A.Y., Ghani, Supri. A., Ahmad, M.N., Wahab, Y. & Hashim, U. (2013). Development of Interdigitated Electrode Molecular Imprinted Polymer Sensor for Monitoring Alpha Pinene Emissions from Mango Fruit. Proc. Engin., 53, 197–202, DOI: 10.1016/j. proeng.2013.02.026. Open DOISearch in Google Scholar

Nissen, L., Zatta, A., Stefanini, I., Grandi, S., Sgorbati, B., Biavati, B. & Monti, A. (2010). Characterization and Antimicrobial Activity of Essential Oils of Industrial Hemp Varieties (Cannabis Sativa L.). Fitoterapia, 81, 413–419, DOI: 10.1016/j.fitote.2009.11.010. Open DOISearch in Google Scholar

Laird, K., Kurzbach, E., Score, J., Tejpal, J., Chi Tangyie, G. & Phillips, C. (2014). Reduction of Legionella Spp. in Water and in Soil by a Citrus Plant Extract Vapor. Applied. Environ. Microb., 80, 6031–6036, DOI: 10.1128/AEM.01275-14. Open DOISearch in Google Scholar

Russo, E.B. (2011). Taming THC: Potential Cannabis Synergy and Phytocannabinoid-Terpenoid Entourage Effects: Phytocannabinoid-Terpenoid Entourage Effects. British J. Pharmac., 163, 1344–1364, DOI: 10.1111/j.1476-5381.2011.01238.x. Open DOISearch in Google Scholar

Randrianarivelo, R., Sarter, S., Odoux, E., Brat, P., Lebrun, M., Romestand, B., Menut, C., Andrianoelisoa, H., Raherimandimby, M. & Danthu, P. (2009). Composition and Antimicrobial Activity of Essential Oils of Cinnamosma Fragrans. Food Chemistry, 114, 680–684, DOI: 10.1016/j.foodchem.2008.10.007. Open DOISearch in Google Scholar

Trytek, M., Paduch, R., Fiedurek, J. & Kandefer-Szerszeń, M. (2007). Monoterpenes – Old Compounds, New Applications and Biotechnological Methods for Their Obtainment. Biotechnology, 76, 135–155 (in Polish). Search in Google Scholar

Zdrojewicz, Z., Minczakowska, K. & Klepacki, K. (2014). The Role of Aromatherapy in Medicine. Family Medicine and Primary Care Review, 16, 387–391. Search in Google Scholar

Yu, W., Wen, M., Yang, L. & Liu, Z. (2002). Ferric Chloride Catalyzed Isomerization and Cyclization of Geraniol, Linalool and Nerol. Chinese Chemical Letters, 13, 495–496. Search in Google Scholar

Haese, F., Ebel, K., Burkart, K., Unverricht, S. & Münster, P. Method for Isomerizing Allyl Alcohols 2006. Search in Google Scholar

Srivastava, P., Wagh, R.S. & Naik, D.G. (2010). γ-Irradiation: A Simple Route for Isomerization of Geraniol into Nerol and Linalool. Radiochemistry, 52, 561–564, DOI: 10.1134/S1066362210050206. Open DOISearch in Google Scholar

Tsitsishvili, V., Ramishvili, T., Ivanova, I., Dobryakova, I., Bukia, T. & Kokiashvili, N. (2018). Formation of Long-Chain and Macrocyclic Compounds during Catalytic Conversion of Geraniol on Micro-and Micro-Mesoporous BEA-Type Zeolite. Bulletin of the Georgian National Academy of Sciences, 12, 62–69. Search in Google Scholar

Fajdek-Bieda, A., Wróblewska, A., Miądlicki, P., Szymań-ska, A., Dzięcioł, M., Booth, A.M. & Michalkiewicz, B. (2020). Influence of Technological Parameters on the Isomerization of Geraniol Using Sepiolite. Catalysis Letters, 150, 901–911, DOI: 10.1007/s10562-019-02987-1. Open DOISearch in Google Scholar

Fajdek-Bieda, A., Wróblewska, A., Miądlicki, P., Tołpa, J. & Michalkiewicz, B. (2021). Clinoptilolite as a Natural, Active Zeolite Catalyst for the Chemical Transformations of Geraniol. Reac. Kin. Mech. Catal., 133, 997–1011, DOI: 10.1007/s11144-021-02027-3. Open DOISearch in Google Scholar

Królikowski, W. & Rosłaniec, Z. Polymer Nanocomposites. Composites 2004, R. 4, nr 9, 3–15 (in Polish). Search in Google Scholar

Bolewski, A., Budkiewicz, M. & Wyszomirski, P. Ceramic Raw Materials, Geological Publishers: Warsaw, 1991, ISBN 978-83-220-0412-8 (in Polish). Search in Google Scholar

Sarbak, Z. Adsorption and adsorbents: theory and application, Chemistry, 1st ed., Adam Mickiewicz University: Poznań, 2000, ISBN 978-83-232-1108-2 (in Polish). Search in Google Scholar

Costanzo, P.M. (1984). Static and Dynamic Structure of Water in Hydrated Kaolinites. I. The Static Structure. Clays and Clay Minerals, 32, 419–428, DOI: 10.1346/CCMN.1984.0320511. Open DOISearch in Google Scholar

Veerabadran, N.G., Price, R.R., Lvov, Y.M. (2007). Clay Nanotubes For Encapsulation And Sustained Release Of Drugs. NANO, 02, 115–120, DOI: 10.1142/S1793292007000441. Open DOISearch in Google Scholar

Utracki, L.A. Clay-Containing Polymeric Nanocomposites, Rapra Technology Ltd: Shrewsbury, 2004, ISBN 978-1-85957-437-9. Search in Google Scholar

Kuczyńska, H., Kamińska-Tarnawska, E. & Sołtys, J. (2011). Mineral from the “Dunino” Deposits as a Nanosurface for Obtaining Paints. Chem. Ind. 90, 138–147 (in Polish). Search in Google Scholar

Joussein, E., Petit, S. & Delvaux, B. (2007). Behavior of Halloysite Clay under Formamide Treatment. Appl. Clay Sci., 35, 17–24, DOI: 10.1016/j.clay.2006.07.002. Open DOISearch in Google Scholar

Opaliński, S., Korczyński, M., Kołacz, R., Dobrzański, Z. & Żmuda, K. (2009). Use of Selected Aluminosilicates as Ammonia Adsorbents. Chem. Industry, 88, 5, 540–543 (in Polish). Search in Google Scholar

Szczygielska, A. & Kijeński, J. (2010). Application of Haloysite as a Filler for Modification of Polypropylene. Part II. Studies of the Properties of the Obtained PP Composites with HNT. Composites, R.,2, 186–191 (in Polish). Search in Google Scholar

Szczygielska, A., Kijeński, J. & Kozłowski, P. Polymer Modification. Status and Prospects in the Year 2009 (in Polish). Search in Google Scholar

Zou, M., Du, M., Zhu, H., Xu, C. & Fu, Y. (2012). Green Synthesis of Halloysite Nanotubes Supported Ag Nanoparticles for Photocatalytic Decomposition of Methylene Blue. J. Phys.D: Appl. Phys., 45, 325302, DOI: 10.1088/0022-3727/45/32/325302. Open DOISearch in Google Scholar

Kamble, R., Ghag, M., Gaikawad, S. & Panda, B.K. (2012). Halloysite Nanotubes and Applications: A Review. J. Adv. Sci. Res. 3, 25–29. Search in Google Scholar

Lvov, Y. & Abdullayev, E. (2013). Functional Polymer– Clay Nanotube Composites with Sustained Release of Chemical Agents. Progress in Pol. Sci., 38, 1690–1719, DOI: 10.1016/j. progpolymsci.2013.05.009. Open DOISearch in Google Scholar

Jinhua, W., Xiang, Z., Bing, Z., Yafei, Z., Rui, Z., Jindun, L. & Rongfeng, C. (2010). Rapid Adsorption of Cr (VI) on Modified Halloysite Nanotubes. Desalination, 259, 22–28, DOI: 10.1016/j.desal.2010.04.046. Open DOISearch in Google Scholar

Barrientos-Ramírez, S., Oca-Ramírez, G.M., Ramos-Fernández, E.V., Sepúlveda-Escribano, A., Pastor-Blas, M.M. & González-Montiel, A. (2021). Surface Modification of Natural Halloysite Clay Nanotubes with Aminosilanes. Application as Catalyst Supports in the Atom Transfer Radical Polymerization of Methyl Methacrylate. Appl. Catal. A: Gen., 406, 22–33, DOI: 10.1016/j.apcata.2011.08.003. Open DOISearch in Google Scholar

Zhang, J., Zhang, D., Zhang, A., Jia, Z. & Jia, D. (2013). Dendritic Polyamidoamine-Grafted Halloysite Nanotubes for Fabricating Toughened Epoxy Composites. Irian Pol. J., 22, 501–510, DOI: 10.1007/s13726-013-0151-5. Open DOISearch in Google Scholar

Bergaya, F. & Lagaly, G. (2006). Chapter 1 General Introduction: Clays, Clay Minerals, and Clay Science. In Developments in Clay Science, Elsevier, 1, 1–18, ISBN 978-0-08-044183-2. Search in Google Scholar

Masters, A.F. & Maschmeyer, T. (2011). Zeolites – From Curiosity to Cornerstone. Micropor. Mesopor. Mater., 142, 423–438, DOI: 10.1016/j.micromeso.2010.12.026. Open DOISearch in Google Scholar

Armbruster, T. (1993). Dehydration Mechanism of Clinoptilolite and Heulandite: Single-Crystal X-Ray Study of Na-Pooro Ca-, K-, Mg-Rich Clinoptilolite at 100 K. American Mineralogist, 78, 260–264. Search in Google Scholar

Handke, M. Crystal chemistry of silicates, AGH Uczelniane Wydawnictwa Naukowo-Techniczne: Kraków, 2005, ISBN 978-83-7464-016-9 (in Polish). Search in Google Scholar

Szymańska, A. Increasing Microporosity of Mironecuton for CO2 Adsorption Process. In Advances in Chemical Technology and Engineering 2018, ZUT Szczecin, Polish Chemical Society: Szczecin, 2018 (in Polish). Search in Google Scholar

Kiari, M., Berenguer, R., Montilla, F. & Morallón, E. (2020). Preparation and Characterization of Montmorillonite/PEDOT-PSS and Diatomite/PEDOT-PSS Hybrid Materials. Study of Electrochemical Properties in Acid Medium. J. Compos. Sci., 4, 51, DOI: 10.3390/jcs4020051. Open DOISearch in Google Scholar

Paciorek-Sadowska, J., Borowicz, M., Czupryński, B., Liszkowska, J., & Tomaszewska, E. (2021). Ap plication of halloysite as filler in the production of rigid PUR-PIR foams. Polimery, 63(3), 185–190. DOI: 10.14314/polimery.2018.3.3 (in Polish). Open DOISearch in Google Scholar

Machnicka, A. & Nowicka, E. (2016). The use of halloy-site to reduce pollutions concentration in municipal wastewater. Ecol. Engin. & Environ. Technol., (50), 217–222. DOI: 10.12912/23920629/66853. Open DOISearch in Google Scholar

Kumar Dutta, D., Jyoti Borah, B., & Pollov Sarmah, P. (2015). Recent Advances in Metal Nanoparticles Stabilization into Nanopores of Montmorillonite and Their Catalytic Applications for Fine Chemicals Synthesis. Catal. Rev., 57(3), 257–305. DOI: 10.1080/01614940.2014.1003504. Open DOISearch in Google Scholar

Lendzion-Bieluń, Z., Moszyński, D. Advances in Chemical Technology and Engineering 2018, ZUT Szczecin, Polish Chemical Society: Szczecin, 2018, ISBN 978-83-7663-266-7 (in Polish). Search in Google Scholar

Pajdak, A., Skoczylas, N., Szymanek, A., Lutyński, M. & Sakiewicz, P. (2020). Sorption of CO2 and CH4 on Raw and Calcined Halloysite—Structural and Pore Characterization Study. Materials, 13, 917, DOI: 10.3390/ma13040917. Open DOISearch in Google Scholar

Szczepanik, B., Słomkiewicz, P., Garnuszek, M., Rogala, P., Banaś, D., Kubala-Kukuś, A. & Stabrawa, I. (2017). Effect of Temperature on Halloysite Acid Treatment for Efficient Chloroaniline Removal from Aqueous Solutions. Clay and Clays Minerals, 65, 155–167, DOI: 10.1346/CCMN.2017.064056. Open DOISearch in Google Scholar

Djowe, A.T., Laminsi, S., Njopwouo, D., Acayanka, E. & Gaigneaux, E.M. (2013). Surface Modification of Smectite Clay Induced by Non-Thermal Gliding Arc Plasma at Atmospheric Pressure. Plasma Chemistry and Plasma Processing, 33, 707–723, DOI: 10.1007/s11090-013-9454-8. Open DOISearch in Google Scholar

Borralleras, P., Segura, I., Aranda, M.A.G. & Aguado, A. (2019). Influence of Experimental Procedure on D-Spacing Measurement by XRD of Montmorillonite Clay Pastes Containing PCE-Based Superplasticizer. Cement and Concrete Research, 116, 266–272, DOI: 10.1016/j.cemconres.2018.11.015. Open DOISearch in Google Scholar

Kaufhold, S., Dohrmann, R., Ufer, K. & Meyer, F.M. (2002). Comparison of Methods for the Quantification of Montmorillonite in Bentonites. Appl. Clay Sci., 22, 145–151, DOI: 10.1016/S0169-1317(02)00131-X. Open DOISearch in Google Scholar

Milagres, J.L., Bellato, C.R., Vieira, R.S., Ferreira, S.O. & Reis, C. (2017). Preparation and Evaluation of the Ca-Al Layered Double Hydroxide for Removal of Copper(II), Nickel(II), Zinc(II), Chromium(VI) and Phosphate from Aqueous Solutions. J. Environ. Chem. Engin., 5, 5469–5480, DOI: 10.1016/j.jece.2017.10.013. Open DOISearch in Google Scholar

Wu, X., Liu, C., Qi, H., Zhang, X., Dai, J., Zhang, Q., Zhang, L., Wu, Y. & Peng, X. (2016). Synthesis and Adsorption Properties of Halloysite/Carbon Nanocomposites and Halloysite-Derived Carbon Nanotubes. Appl. Clay Sci., 119, 284–293, DOI: 10.1016/j.clay.2015.10.029. Open DOISearch in Google Scholar

Abdullayev, E., Price, R., Shchukin, D. & Lvov, Y. (2009). Halloysite Tubes as Nanocontainers for Anticorrosion Coating with Benzotriazole. ACS Appl. Mater. Interf., 1, 1437–1443, DOI:10.1021/am9002028. Search in Google Scholar

Bodeepong, S., Bhongsuwan, D., Bhongsuwan, T., Pungrassami, T. (2011). Characterization of Halloysite from Thung Yai Distric, Nackon Si Thammarat Province, in Shouthern Thailand. J. Sci. and Technol., 33, 599–607. Search in Google Scholar

Zhang, A.-B., Pan, L., Zhang, H.-Y., Liu, S.-T., Ye, Y., Xia, M.-S. & Chen, X.-G. (2012). Effects of Acid Treatment on the Physico-Chemical and Pore Characteristics of Halloysite. Coll. Surf. A: Physicochem. Engin. Aspects, 396, 182–188, DOI: 10.1016/j.colsurfa.2011.12.067. Open DOISearch in Google Scholar

Akpomie, K.G. & Dawodu, F.A. (2016). Acid-Modified Montmorillonite for Sorption of Heavy Metals from Automobile Effluent. Beni-Suef University J. Basic and Appl. Sci., 5, 1–12, DOI: 10.1016/j.bjbas.2016.01.003. Open DOISearch in Google Scholar

Szczepanik, B., Słomkiewicz, P., Garnuszek, M., Czech, K., Banaś, D., Kubala-Kukuś, A. & Stabrawa, I. (2015). The Effect of Chemical Modification on the Physico-Chemical Characteristics of Halloysite: FTIR, XRF, and XRD Studies. J. Molec. Struc., 1084, 16–22, DOI:10.1016/j.molstruc.2014.12.008. Search in Google Scholar

eISSN:
1899-4741
Język:
Angielski
Częstotliwość wydawania:
4 razy w roku
Dziedziny czasopisma:
Industrial Chemistry, Biotechnology, Chemical Engineering, Process Engineering