Otwarty dostęp

Experimental research on the thermal properties of innovative insulation boards made of polyurethane-polyisocyanurate (PUR/PIR)


Zacytuj

The European Green Deal, Brussels, 11.12.2019 COM (2019) 640 final, https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:52019DC0640. Search in Google Scholar

Gupta, A., Badr, Y., Negahban, A. & Qiu, R.G. (2021). Energy-efficient heating control for smart buildings with deep reinforcement learning. J. Buil. Engin. 34, 101739. DOI: 10.1016/j.jobe.2020.101739. Open DOISearch in Google Scholar

Naldzhiev, D., Mumovic, D. & Strlic, M. (2020). Polyurethane insulation and household products – A systematic review of their impact on indoor environmental quality. Buil. Environ. 169, 106559. DOI: 10.1016/j.buildenv.2019.106559. Open DOISearch in Google Scholar

Khaleel, M., Soykan, U. & Çetin, S. (2021). Influences of turkey feather fiber loading on significant characteristics of rigid polyurethane foam: Thermal degradation, heat insulation, acoustic performance, air permeability and cellular structure. Construc. Buil. Mater. 308, 125014. DOI: 10.1016/j.conbuildmat.2021.125014. Open DOISearch in Google Scholar

Wirpsza, Z. (1991). Poliuretany: Chemia, Technologia, Zastosowanie, Wydawnictwa Naukowo Techniczne, Poland. Search in Google Scholar

Heiran, R., Ghaderian, A., Reghunadhan, A., Sedaghati, F. & Thomas, S. (2021). Glycolysis: An efficient route for recycling of end of life polyurethane foams. J. Polymer Res., 28(1), 1–19. Search in Google Scholar

Gao, T., Jelle, B.P., Gustavsen, A. & Jacobsen, S. (2014). Aerogel-incorporated concrete: An experimental study. Constr. Buil. Mater. 52, 130–136. DOI: 10.1016/j.conbuildmat.2013.10.100. Open DOISearch in Google Scholar

Schmidt, M. & Schwertfeger, F. (1998). Applications for silica-based aerogel products on an industrial scale. Materials Research Society Online Proceedings Library 521, 179–184. Search in Google Scholar

Leung, C.K.K., Lu, L., Liu, Y., Cheng, H.S.S. & Tse, J.H. (2020). Optical and thermal performance analysis of aerogel glazing technology in a commercial building of Hong Kong. Energy Buil. Environ. 1 (2), 215–223. DOI: 10.1016/j.enbenv.2020.02.001. Open DOISearch in Google Scholar

Nocentini, K., Achard, P., Biwole, P. & Stipetic, M. (2018). Hygro-thermal properties of silica aerogel blankets dried using microwave heating for building thermal insulation. Energy Buil. 158, 14–22. DOI: 10.1016/j.enbuild.2017.10.024. Open DOISearch in Google Scholar

Wernery, J., Ben-Ishai, A., Binder, B. & Brunner, S. (2017). Aerobrick – An aerogel-filled insulating brick. Energy Procedia 134, 490–498. DOI: 10.1016/j.egypro.2017.09.607. Open DOISearch in Google Scholar

Berardi, U. (2017). The benefits of using aerogel-enhanced systems in building retrofits. Energy Procedia 134, 626–635. Search in Google Scholar

Karamikamkar, S., Naguib, H.E. & Park, C.B. (2020). Advances in precursor system for silica-based aerogel production toward improved mechanical properties, customized morphology, and multifunctionality: A review. Adv. Colloid Interf. Sci. 276, 102101. DOI: 10.1016/j.cis.2020.102101. Open DOISearch in Google Scholar

Gurav, J.L., Jung, I.K., Park, H.H., Kang, E.S. & Nadargi, D.Y. (2010). Silica Aerogel: Synthesis and Applications. J. Nanomater., 409310. DOI:10.1155/2010/409310. Search in Google Scholar

Pan, Y., He, S., Gong, L., Cheng, X., Li, C., Li, Z., Liu, Z. & Zhang, H. (2017). Low thermal-conductivity and high thermal stable silica aerogel based on MTMS/Water-glass co-precursor prepared by freeze drying. Mater. and Design 113, 246–253. Search in Google Scholar

Xu, D., Yu, K. & Qian, K. (2018). Thermal degradation study of rigid polyurethane foams containing tris (1-chloro-2-propyl) phosphate and modified aramid fiber. Polymer Testing, 67, 159–168. Search in Google Scholar

Jankowski, P. & Kędzierski, M. (2011). Synthesis of polystyrene of reduced flammability by suspension polymerization in the presence of halogen-free additives. Polimery, 56(1), 20–26. Search in Google Scholar

Jankowski, P. & Kijowska, D. (2016). The influence of parameters of manufacturing hybrid flame retardant additives containing graphite on their effectiveness. Polimery, 61(5), 327–333. Search in Google Scholar

Jankowski, P. & Kędzierski, M. (2013). Polystyrene with reduced flammability containing halogen-free flame retardants. Polimery, 58(5), 342–349. Search in Google Scholar

Wang, S.X., Zhao, H.B., Rao, W.H., Huang,, S.C., Wang, T., Lioa, W. & Wang, Y.Z. (2018). Inherently flame-retardant rigid polyurethane foams with excellent thermal insulation and mechanical properties. Polymer 153, 616–625, DOI: 10.1016/j. polymer.2018.08.068. Open DOISearch in Google Scholar

Prałat, K., Jaskulski, R., Ciemnicka, J., Makomaski, G. (2021). Analysis of the thermal properties and structure of gypsum modified with cellulose based polymer and aerogels. Arch. Civil Engin., 66(4). DOI: 10.24425/ace.2020.135214. Open DOISearch in Google Scholar

Prałat, K., Grabowski, M., Kubissa, W., Jaskulski, R. & Ciemnicka, J. (2019). Application of experimental setup for the thermal conductivity measurement of building materials using the “hot wire” method. Sci. Review Engin. Environ. Sci., 2019(1), 153–160. DOI: 10.22630/PNIKS.2019.28.1.14. Open DOISearch in Google Scholar

Buczkowska, K.E., Prałat, K., Ciemnicka, J., & Koper, A. (2021). Comparison of the Thermal Properties of Geopolymer and Modified Gypsum. Polymers 13(8), 1220. DOI: 10.3390/polym13081220. Open DOISearch in Google Scholar

eISSN:
1899-4741
Język:
Angielski
Częstotliwość wydawania:
4 razy w roku
Dziedziny czasopisma:
Industrial Chemistry, Biotechnology, Chemical Engineering, Process Engineering