Otwarty dostęp

Treatment of wastewater from the production of meat and bone meal by the Fenton process and coagulation


Zacytuj

1. Hiromi Ariyaratne, W.K., Malagalage, A., Melaaen, M.C. & Tokheim L.A. (2014). CFD Modeling of Meat and Bone Meal Combustion in a Rotary Cement Kiln. Int. J. Model. Optim. 4, 263–272. DOI: 10.7763/ijmo.2014.v4.384.10.7763/IJMO.2014.V4.384 Search in Google Scholar

2. Gulyurtlu, I., Boavida, D., Abelha, P., Lopes, M.H. & Cabrita I. (2005). Co-combustion of coal and meat and bone meal. Fuel 84, 2137–2148. DOI: 10.1016/j.fuel.2005.04.024.10.1016/j.fuel.2005.04.024 Search in Google Scholar

3. Möller, K. (2015). Assessment of alternative phosphorus fertilizers for organic farming: meat and bone meal. Fact Sheet, Project: IMPROVE-P. Search in Google Scholar

4. Hendriks, W.H., Butts, C.A., Thomas, D.V., James, K.A.C., Morel, P.C.A. & Verstegen, M.V.A. (2002). Nutritional quality and variation of meat and bone meal. Asian-Australas J. Anim. Sci. 15, 1507–1516. DOI: 10.5713/ajas.2002.1507.10.5713/ajas.2002.1507 Search in Google Scholar

5. Garcia, R.A., Rosentrater, K.A. & Flores, R.A. (2006). Characteristics of North American meat and bone meal relevant to the development of non-feed applications. Appl. Eng. Agric. 22, 729–736. DOI:10.13031/2013.21989.10.13031/2013.21989 Search in Google Scholar

6. Kowalski, Z., Makara, A. (2021). The circular economy model used in the polish agro-food consortium: A case study. J. Clean. Prod. 284, 124751.10.1016/j.jclepro.2020.124751 Search in Google Scholar

7. Stępień, A. & Wojtkowiak, K. (2015). Effect of meat and bone meal on the content of microelements in the soil and wheat grains and oilseed rape seeds. J. Elem. 20, 999–1010. DOI:10.5601/jelem.2015.20.1.811.10.5601/jelem.2015.20.1.811 Search in Google Scholar

8. Chen, L., Kivelä, J., Helenius, J. & Kangas, A. (2011). Meat bone meal as fertiliser for barley and oat. Agr. Food Sci. 20, 235–244. DOI:10.2137/145960611797471552.10.2137/145960611797471552 Search in Google Scholar

9. Kowalski, Z., Banach, M., Makara, A. (2021). Optimisation of the co-combustion of meat–bone meal and sewage sludge in terms of the quality produced ashes used as substitute of phosphorites. Environ Sci Pollut Res., 28(7), 8205–8214. DOI: 10.1007/s11356-020-11022-5.10.1007/s11356-020-11022-5785441233058077 Search in Google Scholar

10. Kowalski, Z., Krupa-Żuczek, K. (2007). A model of the meat waste management. Pol. J. Chem. Technol. 9, 91–97. DOI: 10.2478/v10026-007-0098-410.2478/v10026-007-0098-4 Search in Google Scholar

11. BREF (2005). Integrated Pollution Prevention and Control Reference Document on Best Available Techniques in the Slaughterhouses and Animal By-products Industries, EC, May 2005. Search in Google Scholar

12. Henze, M., Harremoës, P., Jansen, J. & Arvin, E. (1995). Wastewater Treatment-Biological and Chemical Processes. Springer-Verlag, Berlin Heidelberg, Germany. Search in Google Scholar

13. Makara, A., Kowalski, Z. & Saeid, A. (2015). Treatment of wastewater from production of meat-bone meal. Open Chem. 13,1275–1285. DOI: 10.1515/chem-2015-0145.10.1515/chem-2015-0145 Search in Google Scholar

14. Johns, M.R. (1995). Developments in wastewater treatment in the meat processing industry: A review. Bioresource Technol. 54, 203–216. DOI: 10.1016/0960-8524(95)00140-9.10.1016/0960-8524(95)00140-9 Search in Google Scholar

15. Tzoupanos, N.D. & Zouboulis, I. (2008). Coagulation--Flocculation Processes in Water/Wastewater Treatment : the Application of New Generation of Chemical Reagents. 6th IASME/WSEAS International Conference on HEAT TRANSFER, THERMAL ENGINEERING and ENVIRONMENT (HTE’08), Rhodes, Greece, August 20-22, 2008. Search in Google Scholar

16. Teh, C.Y., Budiman, P.M., Shak, K.P.Y. & Wu, T.Y. (2016). Recent Advancement of Coagulation-Flocculation and Its Application in Wastewater Treatment. Ind. Eng. Chem. Res. 55, 4363–4389. DOI:10.1021/acs.iecr.5b04703.10.1021/acs.iecr.5b04703 Search in Google Scholar

17. Song, Y.R. & Ma, J.W. (2013). Development of Fer-rate(VI) Salt as an Oxidant and Coagulant for Water and Wastewater Treatment. Appl. Mech. Mater. 361–363, 658–661. DOI: 10.4028/www.scientific.net/AMM.361-363.658.10.4028/www.scientific.net/AMM.361-363.658 Search in Google Scholar

18. Bohdziewicz, J., Sroka, E. & Lobos, E. (2002). Application of the system which combines coagulation, activated sludge and reverse osmosis to the treatment of the wastewater produced by the meat industry. Desalination 144, 393–398. DOI: 10.1016/S0011-9164(02)00349-1.10.1016/S0011-9164(02)00349-1 Search in Google Scholar

19. Bohdziewicz, J. & Sroka, E. (2005). Treatment of waste-water from the meat industry applying integrated membrane systems. Process Biochem. 40, 1339–1346. DOI: 10.1016/j. procbio.2004.06.023.10.1016/j.procbio.2004.06.023 Search in Google Scholar

20. Zueva, S.B., Ostrikov, A.N., Ilyina, N.M., De Michelis, I. & Vegliò, F. (2013). Coagulation Processes for Treatment of Waste Water from Meat Industry. Int. J. Waste Resources 3, 1–4. DOI: 10.4172/2252-5211.1000130.10.4172/2252-5211.1000130 Search in Google Scholar

21. De Sena, R.F., Moreira, F.P.M. & José, H.J. (2008). Comparison of coagulants and coagulation aids for treatment of meat processing wastewater by column flotation. Biores. Technol. 99, 8221–8225. DOI: 10.1016/j.biortech.2008.03.014.10.1016/j.biortech.2008.03.01418442902 Search in Google Scholar

22. Barbusiński, K. (2004). Intensification of wastewater treatment processes and stabilization of excessive sludge with the use of Fenton’s reagent. Silesian Technical University Silesia (in Polish). Search in Google Scholar

23. Aljuboury, D.A.D.A., Palaniandy, P., Abdul Aziz, H.B. & Feroz, S. (2014). A Review on the Fenton Process for Wastewater Treatment. J. Innov. Eng. 2, 4. Search in Google Scholar

24. Pawar, V. & Gawande S. (2015). An overview of the Fenton Process for Industrial Wastewater. J. Mech. Civ. Eng. 127–136. Search in Google Scholar

25. De Sena, R.F., Tambosi, J.L., Genena, A.K., De Moreira, F.P.M., Schröder, H.F. & José, H.J. (2009). Treatment of meat industry wastewater using dissolved air flotation and advanced oxidation processes monitored by GC–MS and LC–MS. Chem. Eng. J. 152, 151–157. DOI: 10.1016/j.cej.2009.04.021.10.1016/j.cej.2009.04.021 Search in Google Scholar

26. Kwarciak-Kozłowska, A., Bohdziewicz, J., Mielczarek, K. & Krzywicka, A. (2011). Treatment of meat industry wastewater using coagulation and Fenton’s reagent. In. M. Kuczma (Ed.), Civil and Environmental Engineering Reports (CEER) (pp. 45–58). Zielona Góra: University Zielona Góra Edition Office. Search in Google Scholar

27. Kowalski, Z. (2019). Data of Farmutil Company (unpublished results, in Polish). Search in Google Scholar

28. Polish standard PN-ISO 6060:2006. Determination of chemical oxygen demand. Search in Google Scholar

29. Polish standard PN-EN ISO 7887:2002. Water quality. Testing and color determination. Search in Google Scholar

30. Polish standard PN-EN ISO 7027:2003. Water quality. Determination of turbidity. Search in Google Scholar

31. Polish Standard PN-EN ISO 6878:2004. Water quality. Determination of phosphorus Ammonium molybdate spec-trometric method. Search in Google Scholar

32. Polish Standard PN-EN 25663:2001. Determination of Kjeldahl nitrogen - the method after mineralization with selenium. Search in Google Scholar

33. Lenth, R.V. (2009, October). Response-Surface Methods in R, Using rsm. J. Stat. Softw. 32, 7. http://www.jstatsoft.org/.10.18637/jss.v032.i07 Search in Google Scholar

eISSN:
1899-4741
Język:
Angielski
Częstotliwość wydawania:
4 razy w roku
Dziedziny czasopisma:
Industrial Chemistry, Biotechnology, Chemical Engineering, Process Engineering