Otwarty dostęp

Retrofitting Heat Exchanger Network of Industrial Ethylene Glycol Plant using Heat Integration based on Pinch Analysis


Zacytuj

1. Dye, R.F. (2001). Ethylene Glycol Technology. Korean J. Chem. Engin.18, 571–579. DOI: 10.1007/BF02706370. Open DOISearch in Google Scholar

2. Nimkar, S. & Mewada, R. (2016). Effect of catalyst selectivity on exergetic and exergoeconomic evaluation of ethylene oxide/ethylene glycol process. Int. J. Exergy, 21(2), 157–185. DOI: 10.1504/IJEX.2016.078924. Open DOISearch in Google Scholar

3. Kawabe, K. (2010). Development of Highly Selective Process for Mono-Ethylene Glycol Production from Ethylene Oxide via Ethylene Carbonate Using Phosphonium Salt Catalyst, Catal Surv Asia 14, 111–115. DOI:10.1007/s10563-010-9094-4. Open DOISearch in Google Scholar

4. Yue, H., Zhao, Y., Ma, X. & Gong, J. (2012). Ethylene glycol: properties, synthesis, and applications. Chem. Soc. Rev., 41, 4218–4244. DOI: 10.1039/C2CS15359A. Open DOISearch in Google Scholar

5. Wang, F., Zhao, Y., Yang, O., Cai, J. & Deng, M. (2013). Process safety data management program based on HAZOP analysis and its application to an ethylene oxide/ethylene glycol plant. J. Loss Prevent. Process Ind., 26, 1399–1406. DOI: 10.1016/j.jlp.2013.08.020. Open DOISearch in Google Scholar

6. Huber, G.,W., Iborra, S. & Corma, A.J. (2006). Synthesis of transportation fuels from biomass: Chemistry, catalysts, and engineering. Chem. Rev., 106, 4044–4098. DOI: 10.1021/cr068360d. Open DOISearch in Google Scholar

7. Serov, A. & Kwak, C.J. (2010). Recent achievements in direct ethylene glycol fuel cells (DEGFC), Appl. Catal. B-Environ. 97, 1–12. DOI: 10.1016/j.apcatb.2010.04.011. Open DOISearch in Google Scholar

8. Bianchini, C. & Shen, P.K. (2009). Palladium-Based Electrocatalysts for Alcohol Oxidation in Half Cells and in Direct Alcohol Fuel Cells. Chem. Rev., 109, 4183–4206. DOI: 10.1021/cr9000995. Open DOISearch in Google Scholar

9. Staples, C.A., Williams, J.B., Craig, G.R. & Roberts, K.M. (2001). Fate, effects and potential environmental risks of ethylene glycol: a review. Chemosphere, 43, 377–383. DOI: 10.1016/S0045-6535(00)00148-X. Open DOISearch in Google Scholar

10. Yang, Q., Zhang, D., Zhou, H. & Zhang, C.J. (2018). Process simulation, analysis and optimization of a coal to ethylene glycol process. Energy. 155, 521–534. DOI: 10.1016/j.energy.2018.04.153. Open DOISearch in Google Scholar

11. Van, Hal, J.W., Ledford, J.S. & Zhang, X.J. (2007). Investigation of three types of catalysts for the hydration of ethylene oxide (EO) to mono ethylene glycol (MEG). Catalysis Today, 123, 310–315. DOI:10.1016/j.cattod.2007.02.015. Open DOISearch in Google Scholar

12. Zhu, F., Huang, K., Wang, S., Shan, L. & Zhu, Q. (2009). Towards further internal heat integration in design of reactive distillation columns—Part IV: Application to a high-purity ethylene glycol reactive distillation column. Chem. Eng. Sci. 64, 3498–3509. DOI: DOI:10.1016/j.ces.2009.04.031. Open DOISearch in Google Scholar

13. Gundersen, T. & Naess, L. (1988). The synthesis of cost optimal heat exchanger networks: An industrial review of the state of the art. Comp. Chem. Engin. 12(6), 503–530. DOI: 10.1016/0098-1354(88)87002-9. Open DOISearch in Google Scholar

14. Yoon, S-G., Lee, J. & Park, S., (2007). Heat integration analysis for an industrial ethylbenzene plant using pinch analysis. Appl. Thermal Engin., 27, 886–893. DOI: 10.1016/j. applthermaleng.2006.09.001. Open DOISearch in Google Scholar

15. Ali, E. & Hadj-Kali, M. (2018). Energy Efficiency Analysis of Styrene Production by Adiabatic Ethylbenzene Dehydrogenation Using Exergy Analysis and Heat Integration, Polish J. Chem. Technol., 20(1), 35–40. DOI: 10.2478/pjct-2018-0006. Open DOISearch in Google Scholar

16. Warumporn, P. & Kitipat, S. (2013). Process Heat Integration between Distillation Columns for Ethylene Hydration Process. Chem. Engin. Transactions, 35, 181–186. DOI: 10.3303/CET1335030. Open DOISearch in Google Scholar

17. Feng, X., Pu, J., Yang, J. & Chu, K.H. (2011). Energy recovery in petrochemical complexes through heat integration retrofit analysis. Appl. Energy, 88, 1965–1982. DOI: 10.1016/j. apenergy.2010.12.02. Open DOISearch in Google Scholar

18. Liang, C. & Feng, X. (2011). Heat Integration of a Continuous Reforming Process. Chem. Engin. Transaction, 25, 213–218. DOI: 10.3303/CET11250367. Open DOISearch in Google Scholar

19. Piacentino, A.J. (2011). Thermal analysis and new insights to support decision making in retrofit and relaxation of heat exchanger networks. Appl. Thermal Engin., 31, 3479–3499. DOI: 10.1016/j.applthermaleng.2011.07.002. Open DOISearch in Google Scholar

20. Knopf, F.C. (2012). Modeling, Analysis and Optimization of Process and Energy Systems, Wiley, New Jersey, USA.10.1002/9781118121160 Search in Google Scholar

21. Hanyak, M.E. (2011). Companion in Chemical Engineering: An Instructional Supplement, CreateSpace Independent Publishing Platform, USA. Search in Google Scholar

22. Smith, J.M., Van, Ness, H.C. & Abbott, M.M. (2005). Introduction to Chemical Engineering Thermodynamics. McGraw-Hill, Boston, USA. Search in Google Scholar

23. Shenoy, U.V. (1995). Heat Exchange Network Synthesis: Process Optimization by Energy and Resource Analysis. Gulf Publ. Co., Houston, TX. Search in Google Scholar

24. Linnhoff, B. (1993). Pinch analysis- A state of the art overview. Trans. Inst. Chem. Eng. Chem. Eng. Res. Des. 71, Part A5, 503–522. GB-93-053046; EDB-93-157424. Search in Google Scholar

25. Douglas, J.M. (1988). Conceptual Design of Chemical Processes, McGraw Hill, New York. USA. Search in Google Scholar

26. El-Halwagi, M.M. (2012). Sustainable Design Through Process Integration, 1st Ed., Butterworth-Heinemann, USA. Search in Google Scholar

27. Klemes, J. (2013). Handbook of Process Integration (PI), Woodhead Publishing, Cambridge, UK.10.1533/9780857097255 Search in Google Scholar

28. Robin, S. (2005). Chemical Process Design and Integration, McGraw-Hill, New Jersey, USA. Search in Google Scholar

29. Kemp, I. (2007). Pinch analysis and Process Integration, Elsevier, USA. Search in Google Scholar

30. Dimian, A.C. (2003). Chapter 10 Pinch point analysis, Computer Aided Chem. Engin.13, 393–434. DOI: 10.1016/S1570-7946(03)80034-2. Open DOISearch in Google Scholar

eISSN:
1899-4741
Język:
Angielski
Częstotliwość wydawania:
4 razy w roku
Dziedziny czasopisma:
Industrial Chemistry, Biotechnology, Chemical Engineering, Process Engineering