Otwarty dostęp

Product diversification from pomelo peel. Essential oil, Pectin and semi-dried pomelo peel


Zacytuj

1. Uysal, B., Sozmen, F., Aktas, O., Oksal, B.S. & Kose, E.O. 2011. Essential Oil Composition and Antibacterial Activity of the Grapefruit (Citrus Paradisi. L.) Peel Essential Oils Obtained by Solvent-Free Microwave Extraction: Comparison with Hydrodistillation. Internat. J. Food Sci. Technol., 46, 1455–1461, DOI: 10.1111/j.1365-2621.2011.02640.x.10.1111/j.1365-2621.2011.02640.x Search in Google Scholar

2. Phat, D.T., Tuyen, K.C., Phong, H.X. & Truc, T.T. 2020. Extraction Process Optimization and Compositional Determination of the Es-Sential Oil from Pomelo (Citrus Grandis L.) Grown in Tien Giang Province, Vietnam. Nat. Volat. Essent. Oils, DOI: 10.37929/nveo.780505.10.37929/nveo.780505 Search in Google Scholar

3. Tran, T.H., Dao, T.P., Ngo, Q.C.T., Bach, L.G. & Huynh, X.P. 2020. Comparative Evaluation of the Antibacterial Activities of the Essential Oils of Citrus Grandis (L.) Osbeck Obtained by Hydrodistillation and Microwave Assisted Extraction Methods. IOP Conf. Ser.: Mater. Sci. Eng., DOI: 10.1088/1757-899X/991/1/012010.10.1088/1757-899X/991/1/012010 Search in Google Scholar

4. Dao, T.P., Tran, T.H., Nguyen, D.T., Nguyen, D.C., Nguyen, D.H., Hong, Le, N.T., Sy, D.T., Thanh Huong, N.T. & Minh, B.L. 2019. Application of Response Surface Methodology for the Optimization of Essential Oils from Pomelo [Citrus Grandis (L.) Osbeck] Leaves Using Microwave-Assisted Hydrodistillation Method. Asian J. Chem. 31, 1639–1642, DOI: 10.14233/ajchem.2019.21768.10.14233/ajchem.2019.21768 Search in Google Scholar

5. Nhi, T.T.Y., Phat, D.T., Quyen, N.N., Cang, M.H., Truc, T.T., Bach, L.G. & Muoi, N.V. 2020. Effects of Vacuum Concentration on Color, Polyphenol and Flavonoid Contents and Antioxidant Activity of Pomelo Citrus Maxima (Burm. f.) Merr. Juice. IOP Conf. Ser.: Mater. Sci. Eng. DOI: 10.1088/1757-899X/991/1/012060.10.1088/1757-899X/991/1/012060 Search in Google Scholar

6. Bocco, A., Cuvelier, M.-E., Richard, H. & Berset, C. 1998. Antioxidant Activity and Phenolic Composition of Citrus Peel and Seed Extracts. J. Agric. Food Chem., 46, 2123–2129, DOI: 10.1021/jf9709562.10.1021/jf9709562 Search in Google Scholar

7. Arias, B. & Ramon-Laca, L. 2005. Pharmacological Properties of Citrus and Their Ancient and Medieval Uses in the Mediterranean Region. J. Ethnopharmac., 97, 89–95, DOI: 10.1016/j.jep.2004.10.019.10.1016/j.jep.2004.10.01915652281 Search in Google Scholar

8. Tao, N.G. & Liu, Y.J. 2012. Chemical Composition and Antimicrobial Activity of the Essential Oil from the Peel of Shatian Pummelo (Citrus Grandis Osbeck). Internat. J. Food Proper., 15, 709–716, DOI: 10.1080/10942912.2010.500067.10.1080/10942912.2010.500067 Search in Google Scholar

9. Cheong, M.W., Loke, X.Q., Liu, S.Q., Pramudya, K., Curran, P. & Yu, B. 2011. Characterization of Volatile Compounds and Aroma Profiles of Malaysian Pomelo (Citrus Grandis (L.) Osbeck) Blossom and Peel. J. Essential Oil Res. 23, 34–44, DOI: 10.1080/10412905.2011.9700445.10.1080/10412905.2011.9700445 Search in Google Scholar

10. González, C.N., Sánchez, F., Quintero, A. & Usubillaga, A. 2002. Chemotaxonomic value of essential oil compounds in citrus species. Acta Hortic., 49–51, DOI: 10.17660/ActaHortic.2002.576.7.10.17660/ActaHortic.2002.576.7 Search in Google Scholar

11. Song, H.S., Ukeda, H. & Sawamura, M. 2001. Antioxidative Activities of Citrus Peel Essential Oils and Their Components against Linoleic Acid Oxidation. FSTR 7, 50–56, DOI: 10.3136/fstr.7.50.10.3136/fstr.7.50 Search in Google Scholar

12. Kar, F. & Arslan, N. 1999. Characterization of orange peel pectin and effect of sugars, l -ascorbic acid, ammo-nium persulfate, salts on viscosity of orange peel pectin solutions. 40, 285–291.10.1016/S0144-8617(99)00063-6 Search in Google Scholar

13. Kaya, M., Sousa, A.G., Crépeau, M.J., Sørensen, S.O. & Ralet, M.C. 2014. Characterization of Citrus Pectin Samples Extracted under Different Conditions: Influence of Acid Type and PH of Extraction. Annals Bot. 114, 1319–1326, DOI: 10.1093/aob/mcu150.10.1093/aob/mcu150 Search in Google Scholar

14. Dao, T.P., Nguyen, D.V., Tran, T.Y.N., Pham, T.N., Nguyen, P.T.N., Bach, L.G., Nguyen, V.H., Do, V.Q., Nguyen, V.M. & Tran, T.T. 2021. Effects of Tannin, Ascorbic Acid, and Total Phenolic Contents of Cashew (Anacardium Occidentale L.) Apples Blanched with Saline Solution. Food Res., 5, 409–416, DOI: 10.26656/fr.2017.5(1).454.10.26656/fr.2017.5(1).454 Search in Google Scholar

15. Homa, B., Farzin, Z.A., Amir, F. & Mahdy, M. 2011. Comparisons between conventional, microwave and ultrasound--assisted methods for extraction of pectin from grapefruit. Chem. Engin. Proc.: Proc. Intensific. 50, 1237–1243, DOI. 10.1016/j.cep.2011.08.002.10.1016/j.cep.2011.08.002 Search in Google Scholar

16. Salma, M. A., Jahan, N., Islam, M.A., Hoque, M.M. 2012. Extraction of Pectin from Lemon Peel: Technology Development. J. Chem. Engin. 27, 25–30, DOI: 10.3329/jce.v27i2.17797.10.3329/jce.v27i2.17797 Search in Google Scholar

17. Bùi Xuân Đông,. Hóa sinh-Phân III, 2014. Truóng Đai hoc Bách khoa Đà Nâng. Search in Google Scholar

18. Phat Dao, T., Chinh Nguyen, D., Hien Tran, T., Van Thinh, P., Quang Hieu, V., Vo Nguyen, D.V., Duy Nguyen, T. & Giang Bach, L. 2019. Modeling and optimization of the orange leaves oil extraction process by microwave-assisted hydro-distillation: the response surface method based on the central composite approach (rsm-ccd model). RJC, 12, 666–676, DOI: 10.31788/RJC.2019.1225107.10.31788/RJC.2019.1225107 Search in Google Scholar

19. Tran, T.H., Ke Ha, L., Nguyen, D.C., Dao, T.P., Thi Hong Nhan, L., Nguyen, D.H., Nguyen, T.D., N. Vo, D.-V., Tran, Q.T. & Bach, L.G. 2019. The Study on Extraction Process and Analysis of Components in Essential Oils of Black Pepper (Piper Nigrum L.) Seeds Harvested in Gia Lai Province, Vietnam. Processes, 7, 56, DOI: 10.3390/pr7020056.10.3390/pr7020056 Search in Google Scholar

20. Njoroge, S.M., Koaze, H., Karanja, P.N., Sawamura, M. 2005. Volatile Constituents of Redblush Grapefruit (Citrus Paradisi) and Pummelo (Citrus Grandis) Peel Essential Oils from Kenya. J. Agric. Food Chem. 53, 9790–9794, DOI: 10.1021/jf051373s.10.1021/jf051373s Search in Google Scholar

21. Jia-xun, L. 2008. Study on Chemical constituents of volatile oil from Citrus maxima cv. Shatian pomelo with GC-MS, Nat. Library Med. 33(9), 1027–1031. Search in Google Scholar

22. Lota, M.L., Rocaa, S.D., Tomi, F. & Casanova, J. 2000. Chemical Variability of Peel and Leaf Essential Oils of Mandarins from Citrus Reticulata Blanco. Biochem. Systemat. Ecol. 28, 61–78, DOI: 10.1016/S0305-1978(99)00036-8.10.1016/S0305-1978(99)00036-8 Search in Google Scholar

23. Canteri-Schemin, M.H., Fertonani, H.C.R., Waszczynskyj, N., Wosiacki, G. 2005. Extraction of Pectin from Apple Pomace. Brazil. Archives Biol. Technol., 48, 259–266, DOI: 10.1590/S1516-89132005000200013.10.1590/S1516-89132005000200013 Search in Google Scholar

24. Rasheed, A.M. 2008. Effect of Different Acids, Heating Time and Particle Size on Pectin Extraction from Watermelon Rinds. J. Kerbala Univ. 6. Search in Google Scholar

25. Prakash Maran, J., Mekala, V. & Manikandan, S. 2013. Modeling and Optimization of Ultrasound-Assisted Extraction of Polysaccharide from Cucurbita Moschata. Carbohydrate Polymers, 92, 2018–2026, DOI: 10.1016/j.carbpol.2012.11.086.10.1016/j.carbpol.2012.11.08623399253 Search in Google Scholar

26. Pasandide, B., Khodaiyan, F., Mousavi, Z. & Hosseini, S.S. 2018. Pectin Extraction from Citron Peel: Optimization by Box–Behnken Response Surface Design. Food Sci Biotechnol. 27, 997–1005, DOI: 10.1007/s10068-018-0365-6.10.1007/s10068-018-0365-6608524330263828 Search in Google Scholar

27. Yang, Z. & Zhai, W. 2010. Optimization of Microwave--Assisted Extraction of Anthocyanins from Purple Corn (Zea Mays L.) Cob and Identification with HPLC–MS. Innov. Food Sci. & Emerging Technol. 11, 470–476, DOI: 10.1016/j. ifset.2010.03.003.10.1016/j.ifset.2010.03.003 Search in Google Scholar

28. Xue, Z.H., Zhang, X. & Zhang, Z.J. 2010. Optimization of Pectin Extraction from Citrus Peel by Response Surface Methodology. Food Sci., 32(18), 128–132. Search in Google Scholar

29. Hamidon, N.H. & Zaidel, D.N.A. 2017. Effect of Extraction Conditions on Pectin Yield Extracted from Sweet Potato Peels Residues Using Hydrochloric Acid. Chem. Engin. Transac. 56, 979–984, DOI: 10.3303/CET1756164. Search in Google Scholar

30. Foo, J.X., Abang, Z.D.N. & Ismail, N.H. 2016. Effect of Extraction Parameters on the Yield of Sweet Potato Pectin. Proceedings of the 6th International Graduate Conference on Engineering. Science and Humanities. Universiti Teknologi Malaysia. 146–148. Search in Google Scholar

31. Zhou, S., Wang, H. & Du, J. 2006. Ethanol extraction technology of naringin from grapefruit peel. Transac. Chinese Soc. Agric. Engin. 22,184–187. Search in Google Scholar

32. Nguyễn Cẩm Vân, Nguyễn Minh Chính, Đào Văn Đôn, Nguyễn Tuấn Quang, Nguyễn Quỳnh Ngọc và Nguyễn Văn Thuận, 2015. Nghiên Cứu Chiết Xuất Naringin Bằng Dung Môi Ethanol Từ Cùi Bưởi (Citrus Maxima), Tạp Chí Y - Dược Học Quân Sự Số 1. Search in Google Scholar

eISSN:
1899-4741
Język:
Angielski
Częstotliwość wydawania:
4 razy w roku
Dziedziny czasopisma:
Industrial Chemistry, Biotechnology, Chemical Engineering, Process Engineering