Otwarty dostęp

Synthesis and mechanical and thermal properties of multiblock terpoly(ester-ether-amide) thermoplastic elastomers with variable mole ratio of ether and amide block


Zacytuj

1. Aleksandrovic, V., Djonlagic, J. (2001). Synthesis and characterization of thermoplastic copolyester elastomers modified with fumaric moieties. J. Serb. Chem. Soc. 66(3), 139–152. DOI: 10.2298/JSC0103139A.10.2298/JSC0103139A Search in Google Scholar

2. Van der Schuur, M., Gaymans, R. (2007). Influence of morphology on the properties of segmented block copolymers. Polymer, 48, 1998–2006. DOI: 10.1016/j.polymer.2007.01.063.10.1016/j.polymer.2007.01.063 Search in Google Scholar

3. Wilson, R., Divakaran, A., Kiran, S., Varyambath, A., Kumaran, A., Sivaram, S., Ragupathy, L. (2018). Poly(glycerol sebacate)-Based Polyester–Polyether Copolymers and Their Semi-Interpenetrated Networks with Thermoplastic Poly(ester– ether) Elastomers: Preparation and Properties. ACS Omega. 3, 18714–18723. DOI: 10.1021/acsomega.8b02451.10.1021/acsomega.8b02451631263230613821 Search in Google Scholar

4. Holden, G. (2011). Thermoplastic Elastomers. In M. Kutz (Ed.), Appl. Plastics Engin. Handbook, 77–91, Waltham, Elsevier.10.1016/B978-1-4377-3514-7.10006-6 Search in Google Scholar

5. Holden, G., Bishop, E., Legge, N. (1969). Thermo-plastic elastomers. J. Polym. Sci. 26, 1, 37–57. DOI: 10.1002/polc.5070260104.10.1002/polc.5070260104 Search in Google Scholar

6. Balta Callej,a F.J., Rosłaniec, Z. (2000). Block copolymers, New York, Marcel Dekker.10.1201/9781482270358 Search in Google Scholar

7. Zhang, J., Deubler, R., Hartlieb, M., et al. (2017). Evolution of Microphase Separation with Variations of Segments of Sequence-Controlled Multiblock Copolymers. Macromolecules, 50, 18, 7380–7387. DOI: 10.1021/acs.macromol.7b01831.10.1021/acs.macromol.7b01831 Search in Google Scholar

8. Bates, F.S., Fredrickson, G.H. (1999). Block Copolymers—Designer Soft Materials. Physics Today, 52, 33–38. DOI: 10.1063/1.882522.10.1063/1.882522 Search in Google Scholar

9. Armstrong, S., Freeman, B., Hiltner, A., Baer, E. (2012). Gas permeability of melt-processed poly(ether block amide) co-polymers and the effects of orientation. Polymer. 53, 1383–1392. DOI: 0.1016/j.polymer.2012.01.037.10.1016/j.polymer.2012.01.037 Search in Google Scholar

10. Krijgsman, J., Husken, D., Gaymans, R. (2003). Synthesis and properties of thermoplastic elastomers based on PTMO and tetra-amide. Polymer, 44, 7573–7588. DOI: 10.1016/j. polymer.2003.09.043. Search in Google Scholar

11. Yang, I., Tsai, P. (2006). Intercalation and viscoelasticity of poly(ether-block-amide) copolymer/montmorillonite nano-composites: Effect of surfactant. Polymer, 47, 5131–5140. DOI: 10.1016/j.polymer.2006.04.065.10.1016/j.polymer.2006.04.065 Search in Google Scholar

12. Nojima, S., Kiji, T., Ohguma, Y. (2007). Characteristic Melting Behavior of Double Crystalline Poly(ε-caprolactone)-block-polyethylene Copolymers. Macromolecules, 40, 21, 7566–7572. DOI: 10.1021/ma0627830.10.1021/ma0627830 Search in Google Scholar

13. Klinedinst, D., Yilgör, I., Yilgör, E., et al. (2012). The effect of varying soft and hard segment length on the structure–property relationships of segmented polyurethanes based on a linear symmetric diisocyanate, 1,4-butanediol and PTMO soft segments. Polymer, 53, 5358–5366. DOI: 10.1016/j. polymer.2012.08.005. Search in Google Scholar

14. Winnacker, M., Rirger, B. (2015). Poly(ester amide)s: recent insights into synthesis, stability and biomedical applications. Polym. Chem. 7, 7039–7046. DOI: 10.1039/C6PY01783E.10.1039/C6PY01783E Search in Google Scholar

15. Rodriguez-Galan, A., Lourdes, F., Puiggali, J. (2010). Degradable Poly(ester amide)s for Biomedical Applications. Polymers, 3(1), 1634–1645. DOI: 10.3390/polym3010065.10.3390/polym3010065 Search in Google Scholar

16. Sijbrandi, N., Kimenai, A., Mes E., et al. (2012). Synthesis, Morphology, and Properties of Segmented Poly(ether amide)s with Uniform Oxalamide-Based Hard Segments. Macromolecules, 45, 9, 3948–3961. DOI: 10.1021/ma2022309.10.1021/ma2022309 Search in Google Scholar

17. Fu, T., Wei, Y., Cheng, P., et al. (2018). A Novel Biodegradable and Thermosensitive Poly(Ester-Amide) Hydrogel for Cartilage Tissue Engineering. BioMed Research International. Art. id 2710892. Retrieved June 2, 2021 from Hindawi.com database on the World Wide Web: https://www.hindawi.com. DOI: 10.1155/2018/2710892.10.1155/2018/2710892631398230662902 Search in Google Scholar

18. Zeng, F., Xu, J., Sun, L., et al. (2020). Copolymers of ε-caprolactone and ε-caprolactam via polyesterification: towards sequence-controlled poly(ester amide)s. Polym. Chem. 11, 1211–1219. DOI: 10.1039/C9PY01388A.10.1039/C9PY01388A Search in Google Scholar

19. Goonoo, N., Bhaw-Luximon, A., Bowlin, G., Jhurry, D. (2012). Diblock Poly(ester)-Poly(ester-ether) Copolymers: I. Synthesis, Thermal Properties, and Degradation Kinetics. Ind. Eng. Chem. Res. 51, 37, 12031–12040. DOI: 10.1021/ie301703j.10.1021/ie301703j Search in Google Scholar

20. Xu, Q., Tang, L., Wang, Ch., et al. (2017). Effects of Poly(Ethylene Glycol) Segment on Physical and Chemical Properties of Poly(Ether Ester) Elastomers. Materials Science Forum, 898, 2147–2157. Retrieved June 10, 2021 from Scientific. net database on the World Wide Web: https://www.scientific.net. DOI: 10.4028/www.scientific.net/MSF.898.2147.10.4028/www.scientific.net/MSF.898.2147 Search in Google Scholar

21. Catiker, E., Ozturk, T., Atakay, M., et al. (2019). Synthesis and characterization of novel ABA type poly(Ester-ether) triblock copolymers. J. Polym. Res. 26, 123–126. DOI: 10.1007/s10965-019-1778-5.10.1007/s10965-019-1778-5 Search in Google Scholar

22. Peng, X., Behl, M., Zhang, P., et al., (2017). Synthesis and Characterization of Multiblock Poly(Ester-Amide-Urethane) s. MRS Advances, 2, 2551–2559. DOI: 10.1557/adv.2017.486.10.1557/adv.2017.486 Search in Google Scholar

23. Van Krevelen, D.W., Te Nijehuis, K. (2009). Properties of Polymers, Amsterdam, Elsevier. Search in Google Scholar

24. Scheirs, J., Long, T.E. (2003). Modern Polyesters:chemistry and technology of polyesters and copolyesters, Hoboken, John Wiley & Sons.10.1002/0470090685 Search in Google Scholar

25. Touris, A., Turcios, A., Mintz, E., et al. (2020). Effect of molecular weight and hydration on the tensile properties of polyamide 12. Results in Materials, 8, 100149. DOI 10.1016/j. rinma.2020.100149.10.1016/j.rinma.2020.100149 Search in Google Scholar

26. O’Connor, H.J., Dickson, A.N., Dowling, D.P. (2018). Evaluation of the mechanical performance of polymer parts fabricated using a production scale multi jet fusion printing process. Additive Manufacturing, 22, 381–387. DOI: 10.1016/j. addma.2018.05.035 Search in Google Scholar

27. Rosenbloom, S.I., Gentekos, D.T., Silberstein, M.N., Fors, B.P. (2020). Tailor-made thermoplastic elastomers: customisable materials via modulation of molecular weight distributions. Chem. Sci. 11, 1361–1367. DOI: 10.1039/C9SC05278J.10.1039/C9SC05278J Search in Google Scholar

28. Cho, H., Mayer, S., Poselt, E., et al. (2017). Deformation mechanisms of thermoplastic elastomers: Stress-strain behavior and constitutive modeling. Polymer, 128, 87–99. DOI: 10.1016/j. polymer.2017.08.065. Search in Google Scholar

eISSN:
1899-4741
Język:
Angielski
Częstotliwość wydawania:
4 razy w roku
Dziedziny czasopisma:
Industrial Chemistry, Biotechnology, Chemical Engineering, Process Engineering