Otwarty dostęp

Thermodynamic analysis on disproportionation process of cyclohexylamine to dicyclohexylamine


Zacytuj

1. Börner, T., Rehn, G., Grey, C. & Adlercreutz, P. (2015). A Process Concept for High-Purity Production of Amines by Transaminase-Catalyzed Asymmetric Synthesis: Combining Enzyme Cascade and Membrane-Assisted ISPR. Org. Process Res. Dev. 19(7), 793–799. DOI: 10.1021/acs.oprd.5b00055.10.1021/acs.oprd.5b00055 Search in Google Scholar

2. Liang, G., Wang, A., Li, L., Xu, G., Yan, N. & Zhang, T. (2017). Production of Primary Amines by Reductive Amination of Biomass-Derived Aldehydes/Ketones. Angew. Chem. Int. Ed. 56(11), 3050–3054. DOI: 10.1002/anie.201610964.10.1002/anie.201610964 Search in Google Scholar

3. Hayes, K.S. (2001). Industrial processes for manufacturing amines. Appl. Catal., A. 221, 187–195. DOI: 10.1016/S0926-860X(01)00813-4.10.1016/S0926-860X(01)00813-4 Search in Google Scholar

4. Li, X., Wang, Z., Mao, S., Chen, Y., Tang, M., Li, H. & Wang, Y. (2018). Insight into the Role of Additives in Catalytic Synthesis of Cyclohexylamine from Nitrobenzene. Chin. J. Chem. 36(12), 1191–1196. DOI: 10.1002/cjoc.201800380.10.1002/cjoc.201800380 Search in Google Scholar

5. Araki, S., Nakanishi, K., Tanaka, A. & Kominami, H. (2020). A ruthenium and palladium bimetallic system superior to a rhodium co-catalyst for TiO2-photocatalyzed ring hydrogenation of aniline to cyclohexylamine. J. Catal. 389, 212–217. DOI: 10.1016/j.jcat.2020.05.035.10.1016/j.jcat.2020.05.035 Search in Google Scholar

6. Pan, M., Wang, W., Zhou, Q., Zhang, J. & Zhang, Q. (2018). Analysis and Detection of Gas Phase Corrosion Inhibitor Dicyclohexylamine Ion. Adv. Anal. Chem. 8(3), 124–128. DOI: 10.12677/aac.2018.83015.10.12677/AAC.2018.83015 Search in Google Scholar

7. Roose, P., Eller, K., Henkes, E., Rossbacher, R. & Höke, H. (2015). Amines, Aliphatic. In Ullmann’s Encyclopedia of Industrial Chemistry. Weinhelm, Germany: Wiley-VCH Verlag GmbH & Co. KGaA. DOI: 10.1002/14356007.a02_001.pub2.10.1002/14356007.a02_001.pub2 Search in Google Scholar

8. Narayanan, S. & Unnikrishnan, R.P. (1997). Comparison of hydrogen adsorption and aniline hydrogenation over co-precipitated Co/Al2O3 and Ni/Al2O3 catalysts. J. Chem. Soc., Faraday Trans. 93(10), 2009–2013. DOI: 10.1039/A608074J.10.1039/a608074j Search in Google Scholar

9. Hagihara, H. & Echigoya, E. (1965). The Catalytic Hydrogenation of Aniline. Bull. Chem. Soc. Jpn. 38(12), 2094–2100. DOI: 10.1246/bcsj.38.2094.10.1246/bcsj.38.2094 Search in Google Scholar

10. Vedage, G.A. & Armor, J.N. (1995). U.S. Patent No. 5,567,847. Search in Google Scholar

11. Greenfield, H. (1964). Hydrogenation of Aniline to Cyclohexylamine with Platinum Metal Catalysts. J. Org. Chem. 29(10), 3082–3084. DOI: 10.1021/jo01033a512.10.1021/jo01033a512 Search in Google Scholar

12. Taniguchi, K., Jin, X., Yamaguchi, K. & Mizuno, N. (2016). Facile access to N-substituted anilines via dehydrogenative aromatization catalysis over supported gold–palladium bimetallic nanoparticles. Catal. Sci. Technol. 6, 3929–3937. DOI: 10.1039/C5CY01908G.10.1039/C5CY01908G Search in Google Scholar

13. Mink, G. & Horváth, L. (1998). Hydrogenation of aniline to cyclohexylamine on NaOH-promoted or lanthana supported nickel. React. Kinet. Catal. Lett. 65(1), 59–65. DOI: 10.1007/BF02475316.10.1007/BF02475316 Search in Google Scholar

14. Popov, Y.V., Shishkin, E.V., Latyshova, S.E., Panchekhin, V.A. & Zlatogorskaya, M.K. (2009). RU. Patent No. 2, 408, 573. Search in Google Scholar

15. Popov, Y.V., Mokhov, V.M., Latyshova, S.E., Nebykov, D.N., Panov, A.O. & Davydova, T.M. (2017). Colloid and Nanosized Catalysts in Organic Synthesis: XVIII.1 Disproportionation and Cross-Coupling of Amines During Catalysis with Immobilized Nickel Nanoparticles. Russ. J. Gen. Chem. 87(12), 2757–2761. DOI: 10.1134/S1070363217120015.10.1134/S1070363217120015 Search in Google Scholar

eISSN:
1899-4741
Język:
Angielski
Częstotliwość wydawania:
4 razy w roku
Dziedziny czasopisma:
Industrial Chemistry, Biotechnology, Chemical Engineering, Process Engineering