Zacytuj

1. Kadirvelu, K. & Namasivayam, C. (2003). Activated carbon from coconut coirpith as metal adsorbent: Adsorption of Cd(II) from aqueous solution. Adv. Environ. Res., 7, 471–478. DOI: 10.1016/S1093-0191(02)00018-7.Open DOISearch in Google Scholar

2. Xu, C., Hu, Z., Wang, X., Wang, C., Huang, D. & Qian, Y. (2021). Facile preparation of hierarchical porous carbon from orange peels for high-performance supercapacitor. Int. J. Electrochem. Sci., 16, 1–9. DOI: 10.20964/2021.03.07.Open DOISearch in Google Scholar

3. Serafin, J., Narkiewicz, U., Morawski, A.W., Wróbel, R.J. & Michalkiewicz, B. (2017). Highly microporous activated carbons from biomass for CO2 capture and effective micropores at different conditions. J. CO2 Util., 18, 73–79. DOI: 10.1016/j.jcou.2017.01.006.Open DOISearch in Google Scholar

4. Martin, M.J., Artola, A., Balaguer, M.D. & Rigola, M. (2003). Activated carbons developed from surplus sewage sludge for the removal of dyes from dilute aqueous solutions. Chem. Eng. J., 94, 231–239. DOI: 10.1016/S1385-8947(03)00054-8.Open DOISearch in Google Scholar

5. Staciwa, P., Narkiewicz, U., Sibera, D., Moszyński, D., Wróbel, R.J. & Cormia, R.D. (2019). Carbon Spheres as CO2 Sorbents. Appl. Sci., 9(16), 3349. DOI: 10.3390/app9163349.Open DOISearch in Google Scholar

6. Zielinska, B., Michalkiewicz, B., Chen, X., Mijowska, E. & Kaleńczuk, R.J. (2016). Pd supported ordered mesoporous hollow carbon spheres (OMHCS) for hydrogen storage. Chem. Phys. Lett., 647, 14–19. DOI: 10.1016/j.cplett.2016.01.036.Open DOISearch in Google Scholar

7. Chen, X., Dymerska, A., Mijowska, E., Wen, X., Wróbel, R. (2020). One-step synergistic effect to produce two-dimensional N-doped hierarchical porous carbon nanosheets for high-performance flexible supercapacitors. ACS Appl. Energy Mater., 3, 8562–8572. DOI: 10.1021/acsaem.0c01183.Open DOISearch in Google Scholar

8. Baca, M., Rychtowski, P., Wróbel, R., Mijowska, E., Kaleńczuk, R. & Zielińska, B. (2020). Surface properties tuning of exfoliated graphitic carbon nitride for multiple photocatalytic performance. Sol. Energy, 207, 528–538. DOI: 10.1016/j.solener.2020.07.006.Open DOISearch in Google Scholar

9. Kusiak-Nejman, E., Czyżewski, A., Wanag,A., Dubicki, M., Sadłowski, M., Wróbel, R.J. & Morawski, A.W. (2020). Photocatalytic oxidation of nitric oxide over AgNPs/TiO2-loaded carbon fiber cloths. J. Environ. Manage., 262, 110343. DOI: 10.1016/j.jenvman.2020.110343.32250819Open DOISearch in Google Scholar

10. Kusiak-Nejman, E., Mijowska, E., Szymańska, K., Wróbel, R., Wanag, A., Kapica-Kozar, J. & Morawski, W. (2019). Hybrid carbon-TiO2 spheres: Investigation of structure, morphology and spectroscopic studies. Appl. Surf. Sci., 469, 684–690. DOI: 10.1016/j.apsusc.2018.11.093.Open DOISearch in Google Scholar

11. Wanag, A., Rokicka, P., Kusiak-Nejman, E., Kapica-Kozar, J., Wrobel, R.J., Markowska-Szczupak, A. & Morawski, A.W. (2018). Antibacterial properties of TiO2 modified with reduced graphene oxide. Ecotoxicol. Environ. Saf., 147, 788–793. DOI: 10.1016/j.ecoenv.2017.09.039.28946119Open DOISearch in Google Scholar

12. Morawski, A.W., Kusiak-Nejman, E., Wanag, A., Ka-pica-Kozar, J., Wróbel, R.J., Ohtani, B., Aksienionek, M. & Lipińska, L. (2017). Photocatalytic degradation of acetic acid in the presence of visible light-active TiO2-reduced graphene oxide photocatalysts. Catal. Today, 280, 108–113. DOI: 10.1016/j.cattod.2016.05.055.Open DOISearch in Google Scholar

13. Ziebro, J., Lukasiewicz, I., Grzmil, B., Borowiak-Palen, E. & Michalkiewicz, B. (2009). Synthesis of nickel nanocapsules and carbon nanotubes via methane CVD. J. Alloys Comp., 485, 695–700. DOI: 10.1016/j.jallcom.2009.06.039.Open DOISearch in Google Scholar

14. Czech, Z., Kowalczyk, A., Pełech, R., Wróbel, R., Shao, L., Bai, Y. & Świderska, J. (2012). Using of carbon nanotubes and nano carbon black for electrical conductivity adjustment of pressure-sensitive adhesives. Int. J. Adhes. Adhes., 36, 20–24. DOI: 10.1016/j.ijadhadh.2012.04.004.Open DOISearch in Google Scholar

15. Zhang, S., Shi, X., Wróbel, R., Chen, X. & Mijowska, E. (2019). Low-cost nitrogen-doped activated carbon prepared bypolyethylenimine (PEI) with a convenient method for supercapacitor application. Electrochim. Acta 294, 183–191. DOI: 10.1016/j.electacta.2018.10.111.Open DOISearch in Google Scholar

16. Mlodzik, J., Srenscek-Nazzal, J., Narkiewicz, U., Morawski, A.W., Wrobel, R.J. & Michalkiewicz, B. (2016). Activated carbons from molasses as CO2 sorbents. Acta Phys. Pol. A 129, 402–404. DOI: 10.12693/APhysPolA.129.402.Open DOISearch in Google Scholar

17. Serafin, J., Baca, M., Biegun, M., Mijowska, E., Kaleńczuk, R.J., Sreńscek-Nazzal, J. & Michalkiewicz, B. (2019). Direct conversion of biomass to nanoporous activated biocarbons for high CO2 adsorption and supercapacitor applications. Appl. Surf. Sci., 497. DOI: 10.1016/j.apsusc.2019.143722.Open DOISearch in Google Scholar

18. Sreńscek-Nazzal, J., Narkiewicz, U., Morawski, A.W., Wróbel, R., Gęsikiewicz-Puchalska, A. & Michalkiewicz, B. (2016). Modification of commercial activated carbons for CO2 adsorption. Acta Phys. Pol. A 129, 394–401. DOI: 10.12693/APhysPolA.129.394.Open DOISearch in Google Scholar

19. Gesikiewicz-Puchalska, A., Zgrzebnicki, M., Michalkiewicz, B., Narkiewicz, U., Morawski, A.W. & Wrobel, R.J. (2017). Improvement of CO2 uptake of activated carbons by treatment with mineral acids. Chem. Eng. J., 309, 159–171. DOI: 10.1016/j.cej.2016.10.005.Open DOISearch in Google Scholar

20. Mlodzik, J., Wróblewska, A., Makuch, E., Wróbel, R. J. & Michalkiewicz, B. (2016). Fe/EuroPh catalysts for limonene oxidation to 1,2-epoxylimonene, its diol, carveol, carvone and perillyl alcohol. Catal. Today, 268, 111–120. DOI: 10.1016/j.cattod.2015.11.010.Open DOISearch in Google Scholar

21. Glonek, K., Wróblewska, A., Makuch, E., Ulejczyk, B., Krawczyk, K., Wróbel, Rafal. J., Koren, Z. C. & Michalkiewicz, B. (2017). Oxidation of limonene using activated carbon modified in dielectric barrier discharge plasma. Appl. Surf. Sci. 420, 873–881. DOI: 10.1016/j.apsusc.2017.05.136.Open DOISearch in Google Scholar

22. Lubkowski, K., Arabczyk, W., Grzmil, B., Michalkiewicz, B. & Pattek-Janczyk, A. (2007). Passivation and oxidation of an ammonia iron catalyst. Appl. Catal., A 329, 137–147. DOI: 10.1016/j.apcata.2007.07.006.Open DOISearch in Google Scholar

23. Wróblewska, A., Makuch, E., Mlodzik, J. & Michalkiewicz, B. (2017). Fe-carbon nanoreactors obtained from molasses as efficient catalysts for limonene oxidation. Green Process. Synth., 6, 397–401. DOI: 10.1515/gps-2016-0148.Open DOISearch in Google Scholar

24. Wróblewska, A., Makuch, E., Mlodzik, J., Koren, Z.C. & Michalkiewicz B. (2017). Fe/Nanoporous Carbon Catalysts Obtained from Molasses for the Limonene Oxidation Process. Catal. Lett. 147, 150–160. DOI: 10.1007/s10562-016-1910-7.Open DOISearch in Google Scholar

25. Lubkowski, K., Arabczyk, W., Grzmil, B., Michalkiewicz, B. & Pattek-Janczyk, A. (2007). Passivation and oxidation of an ammonia iron catalyst. Appl. Catal. A-General, 329, 137–147. DOI: 10.1016/j.apcata.2007.07.006.Open DOISearch in Google Scholar

26. Wróblewska, A., Serafin, J., Gawarecka, A., Miadlicki, P., Urbas, K., Koren, Z.C., Llorca, J. & Michalkiewicz, B. (2020). Carbonaceous catalysts from orange pulp for limonene oxidation. Carbon Lett., 30, 189–198. DOI: 10.1007/s42823-019-00084-2.Open DOISearch in Google Scholar

27. Michalkiewicz, B. (2006). The kinetics of homogeneous catalytic methane oxidation. Appl. Catal., A 307, 270–274. DOI: 10.1016/j.apcata.2006.04.006.Open DOISearch in Google Scholar

28. Wróblewska, A., Makuch, E., Mlodzik, J., Koren, Z.C. & Michalkiewicz, B. (2018). Oxidation of limonene over molybdenum dioxide-containing nanoporous carbon catalysts as a simple effective method for the utilization of waste orange peels. React. Kinet. Mech. Catal., 125, 843–858. DOI: 10.1007/s11144-018-1468-z.Open DOISearch in Google Scholar

29. Michalkiewicz, B., Sreńscek-Nazzal, J., Tabero, P., Grzmil, B. & Narkiewicz, U. (2008). Selective methane oxidation to formaldehyde using polymorphic T-, M-, and H-forms of niobium(V) oxide as catalysts. Chem. Pap., 62, 106–113. DOI: 10.2478/s11696-007-0086-4.Open DOISearch in Google Scholar

30. Gong, J., Michalkiewicz, B., Chen, X., Mijowska, E., Liu, J., Jiang, Z., Wen, X. & Tang, T. (2014). Sustainable conversion of mixed plastics into porous carbon nanosheets with high performances in uptake of carbon dioxide and storage of hydrogen. ACS Sustain. Chem. Eng., 2, 2837–2844. DOI: 10.1021/sc500 603h.Open DOISearch in Google Scholar

31. Kapica-Kozar, J., Pirog, E., Kusiak-Nejman, E., Wrobel, R.J., Gesikiewicz-Puchalska, A., Morawski, A.W., Narkiewicz, U. & Michalkiewicz, B. (2017). Titanium dioxide modified with various amines used as sorbents of carbon dioxide. New J. Chem., 41, 1549–1557. DOI: 10.1039/c6nj02808j.Open DOISearch in Google Scholar

32. Okwu, D. & Emenike, I. (2006). Evaluation of the phytonutrients and vitamins content of citrus fruits. Int. J. Mol. Med. Adv. Sci., 2(1), 1–6.Search in Google Scholar

33. Simpson, K. (1981). Tropical and subtropical fruits: composition, properties and uses. Ed. S. Nagy and P.E. Shaw. Westport, Conn.: Avi (1980), pp. 570, $US 49.50.Search in Google Scholar

34. Ferguson, J.J. (2004). World Markets for Organic Fresh Citrus and Juice. Edis1–5 (1969). http://edis.ifas.ufl.eduSearch in Google Scholar

35. Sharma, K., Mahato, N., Cho, M.H. & Lee, Y.R. (2017). Converting citrus wastes into value-added products: Economic and environmently friendly approaches. Nutrition. 34, 29–46. DOI: 10.1016/j.nut.2016.09.006.28063510Open DOISearch in Google Scholar

36. Dhelipan, M., Arunchander, A., Sahu, A.K. & Kalpana, D. (2017). Activated carbon from orange peels as supercapacitor electrode and catalyst support for oxygen reduction reaction in proton exchange membrane fuel cell. J. Saudi Chem. Soc., 21, 487–494. DOI: 10.1016/j.jscs.2016.12.003.Open DOISearch in Google Scholar

37. Wróblewska, A. (2014). The epoxidation of limonene over the TS-1 and Ti-SBA-15 catalysts. Molecules, 19, 19907–19992. DOI: 10.3390/molecules191219907.627093325460313Open DOISearch in Google Scholar

38. Wróblewska, A., Makuch, E. & Miądlicki, P. (2016). The studies on the limonene oxidation over the microporous TS-1 catalyst. Catal. Today, 268, 121–129. DOI: 10.1016/j.cattod.2015.11.008.Open DOISearch in Google Scholar

39. Gawarecka, A. & Wróblewska, A. (2018). Limonene oxidation over Ti-MCM-41 and Ti-MWW catalyst with t-butyl hydroperoxide as the oxidant. Reac. Kinet. Mech. Cat., 124(2), 523–543. DOI: 10.1007/s11144-018-1401-5.Open DOISearch in Google Scholar

40. Retajczyk, M. & Wróblewska, A. (2017). The isomerization of limonene over the Ti-SBA-15 catalyst—the influence of reaction time, temperature, and catalyst content. Catalysts, 7(9), 273, 1–14. DOI: 10.3390/catal7090273.Open DOISearch in Google Scholar

41. Retajczyk, M. & Wróblewska, A. (2019). Isomerization and dehydroaromatization of R(+)-limonene over the Ti-MCM-41 catalyst: effect of temperature, reaction time and catalyst content on product yield. Catalysts, 9, 508 (1–11). DOI: 10.3390/catal9060508.Open DOISearch in Google Scholar

42. Retajczyk, M, Wróblewska, A., Szymańska, A. & Michalkiewicz, B. (2019). Isomerization of limonene over natural zeolite-clinoptilolite. Clay Miner. 54, 121–129. DOI: 10.1180/clm.2019.18.Open DOISearch in Google Scholar

43. Retajczyk, M., Wróblewska, A., Szymańska, A., Miądlicki, P., Koren, Zvi, C. & Michalkiewicz, B. (2020). Synthesis, characterization, and catalytic applications of the Ti-SBA-16 porous material in the selective and green isomerizations of limonene and S-carvone. Catalysts 10, 1452. DOI: 10.3390/catal10121452.Open DOISearch in Google Scholar

44. Chen, B. & Chen, Z. (2009). Sorption of naphthalene and 1-naphthol by biochars of orange peels with different pyrolytic temperatures. Chemosphere, 76, 127–133. DOI: 10.1016/j.chemosphere.2009.02.004.Open DOISearch in Google Scholar

45. Giraldo, L. & Moreno-Pirajan, J.C. (2014). Activated carbon prepared from orange peels coated with titanium oxide nanoparticles: Characterization and applications in the decomposition of NOx. Orient. J. Chem., 30, 451–461. DOI: 10.13005/ojc/300207.Open DOISearch in Google Scholar

46. Dhorabe, P.T., Lataye, D.H. & Ingole, R.S. (2017). Adsorptive removal of 4-nitrophenol from aqueous solution by activated carbon prepared from waste orange peels. J. Hazard. Toxic. Radioact. Waste., 21, 04016015. DOI: 10.1061/(asce)hz.2153-5515.0000332.Open DOISearch in Google Scholar

47. Kwon, D., Oh, J.I., Lam, S.S., Moon, D.H. & Kwon, E.E. (2019). Orange peel valorization by pyrolysis under the carbon dioxide environment. Bioresour. Technol., 285, 121356. DOI: 10.1016/j.biortech.2019.121356.Open DOISearch in Google Scholar

48. Pan, H., Sun, J., Liu, Y., Zhang, J. & Zhou, S. (2021). Preparation of sulfonated carbon derived from orange peel and its application in esterification. Chem. Phys. Lett., 770, 138395. DOI: 10.1016/j.cplett.2021.138395.Open DOISearch in Google Scholar

49. Wróblewska, A., Tołpa, J., Kłosin, D., Miądlicki, P., Koren, Z.C. & Michalkiewicz, B. (2020). The application of TS-1 materials with different titanium contents as catalysts for the autoxidation of α-pinene. Microporous Mesoporous Mater., 305, 110384. DOI: 10.1016/j.micromeso.2020.110384.Open DOISearch in Google Scholar

50. Phillips, M.A., Savage, T.J. & Croteau, R. (1999). Monoterpene synthases of loblolly pine (Pinus taeda) produce pinene isomers and enantiomers. Arch. Biochem. Biophys. 372, 197–204. DOI: 10.1006/abbi.1999.1467.Open DOISearch in Google Scholar

51. Sjödin, K., Persson, M., Borg-Karlson, A.K. & Norin, T. (1996). Enantiomeric compositions of monoterpene hydrocarbons in different tissues of four individuals of Pinus sylvestris. Phytochem., 41, 439–445. DOI: 10.1016/0031-9422(95)00652-4.Open DOISearch in Google Scholar

52. Trytek, M., Paduch, R., Fiedurek, J. & Kandefer-Szerszeń, M. (2007). Monoterpeny - Stare związki, nowe zastosowania i biotechnologiczne metody ich otrzymywania. Biotechnol., 76, 135–155.Search in Google Scholar

53. Kucharska, M., Szymańska, J.A., Wesołowski, W., Bruchajzer, E. & Frydrych, B. (2018). Porównanie składu chemicznego wybranych olejków eterycznych stosowanych w chorobach układu oddechowego. Med. Pr., 69, 167–178. DOI: 10.13075/mp.5893.00673.Open DOISearch in Google Scholar

54. Donaghy, J. & McKay, A. (1994). Pectin extraction from citrus peel by polygalacturonase produced on whey. Bioresour. Technol., 47, 25–28. DOI: 10.1016/0960-8524(94)90024-8.Open DOISearch in Google Scholar

55. Wróblewska, A., Miądlicki, P. & Makuch, E. (2016). The isomerization of a-pinene over the Ti-SBA-15 catalyst – the influence of catalyst content and temperature. Reac. Kinet. Mech. Cat., 119, 641–654. DOI: 10.1007/s11144-016-1059-9.Open DOISearch in Google Scholar

56. Wróblewska, A., Miądlicki, P., Sreńscek-Nazzal, J., Sadłowski, M., Koren, Zvi C. & Michalkiewicz, B. (2018). Alpha-pinene isomerization over Ti-SBA-15 catalysts obtained by the direct method: The influence of titanium content, temperature, catalyst amount and reaction time. Micropor. Mesopor. Mater., 258, 72–82. DOI: 10.1016/j.micromeso.2017.09.007.Open DOISearch in Google Scholar

57. Wróblewska, A., Miądlicki, P., Tołpa, J., Sreńscek-Nazzal,Search in Google Scholar

J., Koren, Zvi, C. & Michalkiewicz, B. (2019). Influence of the titanium content in the Ti-MCM-41 catalyst on the course of the alfa-pinene isomerization process. Catalysts 9, 396(1–16). DOI: 10.3390/catal9050396.Open DOISearch in Google Scholar

58. Wróblewska, A., Miądlicki, P. & Makuch, E. (2016). The isomerization of a-pinene over the Ti-SBA-15 catalyst – the influence of catalyst content and temperature. Reac. Kinet. Mech. Cat., 119, 641–654. DOI: 10.1007/s11144-016-1059-9.Open DOISearch in Google Scholar

59. Wróblewska, A., Miądlicki, P., Sreńscek-Nazzal, J., Sadłowski, M., Koren, Zvi, C. & Michalkiewicz, B. (2018). Alpha-pinene isomerization over Ti-SBA-15 catalysts obtained by the direct method: The influence of titanium content, temperature, catalyst amount and reaction time. Micropor. Mesopor. Mater., 258, 72–82. DOI: 10.1016/j.micromeso.2017.09.007.Open DOISearch in Google Scholar

60. Wróblewska, A., Miądlicki, P., Tołpa, J., Sreńscek-Nazzal, J., Koren, Zvi, C. & Michalkiewicz, B. (2019). Influence of the titanium content in the Ti-MCM-41 catalyst on the course of the alfa-pinene isomerization process. Catalysts, 9, 396(1–16). DOI: 10.3390/catal9050396.Open DOISearch in Google Scholar

61. Moore, R.N., Golumbic, C. & Fisher, G.S. (1956). Auto-xidation of α-Pinene. J. Am. Chem. Soc., 78, 1173–1176. DOI: 10.1021/ja01587a022.Open DOISearch in Google Scholar

62. Rothenberg, G., Yatziv, Y. & Sasson, Y. (1998). Comparative autoxidation of 3-Carene and α-Pinene: Factors governing regioselective hydrogen abstraction reactions. Tetrahedron, 54, 593–598. DOI: 10.1016/S0040-4020(97)10319-2.Open DOISearch in Google Scholar

63. Silva, M.J., Robles-Dutenhefner, P., Menini L. & Gusevskaya, E.V. (2003). Cobalt catalyzed autoxidation of monoterpenes in acetic acid and acetonitrile solutions. J. Mol. Catal. A:Chem., 201, 71–77. DOI: 10.1016/S1381-1169(03)00180-8.Open DOISearch in Google Scholar

64. Mao, J., Hu, X., Li, H., Sun, Y. & Chen, Z. (2008). Iron chloride supported on pyridine-modified mesoporous silica : an efficient and reusable catalyst for the allylic oxidation of olefins with molecular oxygen. Green. Chem., 8. DOI: 10.1039/b807234e.Open DOISearch in Google Scholar

65. De Fhima, M., Gomes, T. & Antunes, O.A.C. (1997). Autoxidation of limonene, cy-pinene and / 3-pinene by dioxygen catalyzed by Co( OAc2)/ bromide. J. Mol. Catal. A:Chem. 121, 2(3), 145–155. DOI: 10.1016/S1381-1169(97)00010-1Open DOISearch in Google Scholar

66. Hwang, S.W., Umar, A., Dar, G.N., Kim, S.H. & Badran, R.I. (2014). Synthesis and characterization of iron oxide nano-particles for phenyl hydrazine sensor applications. Sens. Lett., 12(1), 97–101. DOI: 10.1166/sl.2014.3224.Open DOISearch in Google Scholar

eISSN:
1899-4741
Język:
Angielski
Częstotliwość wydawania:
4 razy w roku
Dziedziny czasopisma:
Industrial Chemistry, Biotechnology, Chemical Engineering, Process Engineering