Zacytuj

1. Henzler, H.J. & Obernosterer, G. (1991). Effect of mixing behavior on gas-liquid mass transfer in highly viscous, stirred non-newtonian liquids. Chem. Eng. Technol. 14, 1–10. DOI: 10.1002/ceat.270140102.Open DOISearch in Google Scholar

2. Espinosa-Solares, T., Brito-De La Fuente, E., Tecante, A. & Tanguy, P.A. (1997). Power consumption of a dual turbine-helical ribbon impeller mixer in ungassed conditions. Chem. Eng. J. 67, 215–219. DOI: 10.1016/S1385-8947(97)00040-5.Open DOISearch in Google Scholar

3. Cheng, J. & Carreau, P.J. (1994). Aerated mixing of viscoelastic fluids with helical ribbons impellers. Chem. Eng. Sci. 49, 1965–1972. DOI: 10.1016/0009-2509(94)80080-4.Open DOISearch in Google Scholar

4. Cheng, J. & Carreau, P.J. (1994). Mixing in the transition flow regime with helical ribbon agitators. Can. J. Chem. Eng. 72, 418–430. DOI: 10.1002/cjce.5450720306.Open DOISearch in Google Scholar

5. Brito-De La Fuente, E., Nuñez, M.C. & Tanguy, P.A. (1997). Non-isothermal of rheologically complex fluids with close-clearance impellers: Effect of natural convection. Chem. Eng. Technol. 20, 203–207. DOI: 10.1002/ceat.270200308.Open DOISearch in Google Scholar

6. Shamlou, P.A. & Edwards, M.F. (1985). Power consumption of helical ribbon mixers in viscous Newtonian and non-Newtonian fluids. Chem. Eng. Sci. 40, 1773–1781. DOI: 10.1016/0009-2509(85)80040-3.Open DOISearch in Google Scholar

7. Carreau, P.J., Chhabra, J. & Cheng, J. (1993). Effect of rheological properties on power consumption with helical ribbon agitators. AIChE J 39,1421–1430. DOI: 10.1002/aic.690390902.Open DOISearch in Google Scholar

8. Masiuk, S., Łącki, H. & Stręk, F. (1992). Power consumption and mixing times for liquid mixing in a ribbon mixer. Chem. Eng. J. 48, 135–130. DOI: 10.1016/0300-9467(92)85015-2.Open DOISearch in Google Scholar

9. Masiuk, S. & Łącki, H. (1993). Power consumption and mixing time for Newtonian and non-Newtonian liquids mixing in a ribbon mixer. Chem. Eng. J. 48, 13–17. DOI: 10.1016/0300-9467(93)80037-O.Open DOISearch in Google Scholar

10. Masiuk, S. (1993). Power consumption, mixing time and attrition action for solid mixing in a ribbon mixer. Powder Technol. 51, 217–229. DOI: 10.1016/0032-5910(87)80022-0.Open DOISearch in Google Scholar

11. Kaneko, Y., Shiojima, T. & Horio, M. (2000). Numerical analysis of particle mixing characteristics in a single helical ribbon agitator using DEM simulation. Powder Technol. 108, 55–64. DOI: 10.1016/S0032-5910(99)00251-X.Open DOISearch in Google Scholar

12. Zhang, M., Zhang, L., Jiang, B., Yin, Y. & Li, X. (2008). Calculation of Metzner constant for double helical ribbon impeller by computational fluid dynamic method. Chin. J. Chem. Eng. 16(5), 686–692. DOI: 10.1016/S1004-9541(08)60141-X.Open DOISearch in Google Scholar

13. Nagata, S., Nishikawa, M., Kayama, T. & Nakajima, M. (1972). Heat transfer to cooling coil acting as rotating coil-type impeller in highly viscous liquids. Chem. Eng. Jpn 5, 187–192. DOI: 10.1252/jcej.5.187.Open DOISearch in Google Scholar

14. Shamlou, P.A. & Edwards, M.F. (1986). Heat transfer to viscous Newtonian and non-Newtonian fluids for helical ribbon mixers. Chem. Eng. Sci. 41, 1957–1967. DOI: 10.1016/0009-2509(86)87112-3.Open DOISearch in Google Scholar

15. Mitsuishi, N. & Miyairi, Y. (1973). Heat transfer to non-newtonian fluids in an agitated vessel. J. Chem. Eng. Jpn 6, 415–420.10.1252/jcej.6.415Search in Google Scholar

16. Ishibashi, K., Yamanaka, A. & Mitsuishi, N. (1979). Heat transfer in agitated vessels with special types of impellers. J. Chem. Eng. Jpn 12, 230–236. DOI: 10.1252/jcej.12.230.Open DOISearch in Google Scholar

17. Lehrer, I.H. (1970). Jacket-side Nusselt number. Ind. Eng. Chem. Proc. Des Dev 9, 553–558. DOI: 10.1021/i260036a010.Open DOISearch in Google Scholar

18. Nagata, S. (1975). Mixing: Principles and Applications. New York, USA: Wiley.Search in Google Scholar

19. Delaplace, G., Demeyre, J.-F., Guérin, R., Debreyne, P. & Leuliet, J.-C. (2005). Determination of representative and instaneous process side heat transfer coefficients in agitated vessel using heat flux sensors. Chem. Eng. Proc. Process Intensific. 44(9), 993–998. DOI: 10.1016/j.cep.2004.11.005.Open DOISearch in Google Scholar

20. Niedzielska, A. & Kuncewicz, C. (2005). Heat transfer and power consumption for ribbon impellers. Mixing efficiency. Chem. Eng. Sci. 60, 2439–2448. DOI: 10.1016/j.ces.2004.10.046.Open DOISearch in Google Scholar

21. Nzihou, A., Bournoville, B., Marchal, P. & Choplin, L. (2004). Rheology and heat transfer during mineral residue phosphatation in a rheo-reactor. Chem. Eng. Res. Design 82, 637–641. DOI: 10.1205/026387604323142694.Open DOISearch in Google Scholar

22. Delaplace, G., Torrez, C., Leuliet, J.-C., Belaubre, N. & Andre, C. (2001). Experimental and CFD simulation of heat transfer to highly viscous fluids in an agitated vessel equipped with a non standard helical ribbon impeller. Chem. Eng. Res. Des. 79(8), 927–937. DOI: 10.1205/02638760152721460.Open DOISearch in Google Scholar

23. Rai, C.L., Devotta, I. & Rao, P.G. (2000). Heat transfer to viscous Newtonian and non-Newtonian fluids using helical ribbon agitator. Chem. Eng. J. 79, 73–77. DOI: 10.1016/S1385-8947(00)00169-8.Open DOISearch in Google Scholar

24. Saraceno, L., Boccardi, G., Celata, G.P., Lazzarini, R. & Trinchieri, R. (2011). Development of two heat transfer correlations for a scraped surface heat exchanger in an ice-cream machine. Appl. Thermal Eng. 31, 17–18. DOI: 10.1016/j.applthermaleng.2011.08.022.Open DOISearch in Google Scholar

25. Gammoudi, A., Ayadi, A. & Baccar, M. (2016). The hydrodynamic and thermal characterization of a yield stress fluid in stirred tanks equipped with simple helical ribbons with two stages. Meccanica 52, 1733–1736. DOI: 10.1007/s11012-016-0506-z.Open DOISearch in Google Scholar

26. Karcz, J. (1999). Studies of local heat transfer in a gas-liquid system agitated by double disc turbines in a slender vessel. Chem. Eng. J. 72, 217–227. DOI: 10.1016/S1385-8947(99)00005-4.Open DOISearch in Google Scholar

27. Rakoczy, R., Masiuk, M., Kordas, M. & Grądzik, P. (2011) The effects of power characteristics on the heat transfer process in various types of motionless mixing devices. Chem. Eng. Proc. 50, 959–969. DOI: 10.1016/j.cep.2011.07.001.Open DOISearch in Google Scholar

eISSN:
1899-4741
Język:
Angielski
Częstotliwość wydawania:
4 razy w roku
Dziedziny czasopisma:
Industrial Chemistry, Biotechnology, Chemical Engineering, Process Engineering