Otwarty dostęp

Time-dependent growth of the dendritic silver prepared using square wave voltammetry technique for methylene blue photodegradation


Zacytuj

1. Stoyanova, A., Bachvarova-Nedelcheva, A. & Iordanova R. (2018). Photocatalytic degradation of two azo-dyes in single and binary mixture by La modified Tio2. J. Chem. Technol. Metall. 53(6), 1173–1178. DOI:Search in Google Scholar

2. Opoku, F., Govender, K.K., Van Sittert, C.G.C.E. & Govender, PP. (2017). Recent Progress in the Development of Semiconductor-Based Photocatalyst Materials for Applications in Photocatalytic Water Splitting and Degradation of Pollutants. Adv. Sustain Syst. 1(7), 1–24. DOI: 10.1002/adsu.201700006.Open DOISearch in Google Scholar

3. Umar, A.A., Rahmi, E., Balouch, A., Rahman, M.Y.A., Salleh, M.M. & Oyama, M. (2014). Highly-reactive AgPt nanofern composed of {001}-faceted nanopyramidal spikes for enhanced heterogeneous photocatalysis application. J. Mater. Chem. A 2(41), 17655–17665. DOI: DOI: 10.1039/c4ta03518f.Open DOISearch in Google Scholar

4. Abdullah, N.A., Bakar, N.A., Shapter, J.G., Salleh, M.M. & Umar, A.A. (2017). Synthesis of silver-platinum nanoferns substrates used in surface-enhanced Raman spectroscopy sensors to detect creatinine. Adv. Nat. Sci. Nanosci. Nanotechnol. 8(2), 1–4. DOI: 10.1088/2043-6254/aa687f.Open DOISearch in Google Scholar

5. Hammad, A., Anzai, A., Zhu, X., Yamamoto, A., Ootsuki, D., Yoshida, T., EL-Shazly, A., Elkady, M. & Yoshida, H. (2020). Photodeposition Conditions of Silver Cocatalyst on Titanium Oxide Photocatalyst Directing Product Selectivity in Photocatalytic Reduction of Carbon Dioxide with Water. Catal Letters 150(4), 1081–1088. DOI: 10.1007/s10562-019-02997-z.Open DOISearch in Google Scholar

6. Xie, J., Zeng, Y., Yang, X. & Xu, X. (2017). Electrode-position of silver dendritic-graphene composite film for photo-catalytic application. Int. J. Electrochem. Sci. 12(3), 1690–1699. DOI: 10.20964/2017.03.49.Open DOISearch in Google Scholar

7. Yin, X., Que, W. & Shen, F. (2011). ZnO nanorods arrays with Ag nanoparticles on the (002) plane derived by liquid epitaxy growth and electrodeposition process. Thin Solid Films 520(1), 186–192. DOI: 10.1016/j.tsf.2011.07.016.Open DOISearch in Google Scholar

8. Ding, C., Tian, C., Krupke, R. & Fang, J. (2012). Growth of non-branching Ag nanowires via ion migrational-transport controlled 3D electrodeposition. Cryst. Eng. Commun. 14(3), 875–879. DOI: 10.1039/c1ce05686g.Open DOISearch in Google Scholar

9. Li, Z., Du, Z. & He, X. (2017). Template-assisted electrodeposition of urchin-like Ag-nanoplate-assembled nanorod arrays and their structurally enhanced SERS performance. J. Electrochem. Soc. 164(13), 895–900. DOI: 10.1149/2.1351713jes.Open DOISearch in Google Scholar

10. Liu, S., Xu, Z., Sun, T., Zhao, W., Wu, X., Ma, Z., Zhang, X., He, J. & Chen, C. (2014). Polymer-Templated Electrode-position of Ag Nanosheets Assemblies Array as Reproducible Surface-Enhanced Raman Scattering Substrate. J. Nanosci. Nanotechnol. 14(6), 4608–4614. DOI: 10.1166/jnn.2014.9036.24738437Open DOISearch in Google Scholar

11. Fu, L., Wang, A., Zheng, Y., Cai, W. & Fu, Z. (2015). Electrodeposition of Ag dendrites/AgCl hybrid film as a novel photodetector. Mater Lett 142, 119–121. DOI: 10.1016/j.matlet.2014.12.001.Open DOISearch in Google Scholar

12. Dhanasmoro, L. & Budi, S. (2019). Surfactant-Free Electrodeposition of Ag Dendrites as Photocatalyst for Methylene Blue Degradation. IOP Conf. Ser. Mater. Sci. Eng. 686(1), 1–6. DOI: 10.1088/1757-899X/686/1/012028.Open DOISearch in Google Scholar

13. Chan, Y.F., Zhang, C.X., Wu, Z.L., Zhao, D.M. & Wang, W. (2013). Ag dendritic nanostructures as ultrastable substrates for surface-enhanced Raman scattering Ag dendritic nanostructures as ultrastable substrates for surface-enhanced Raman scattering. Appl. Phys. Lett. 102, 1–5 DOI: 10.1063/1.4803937.Open DOISearch in Google Scholar

14. Hanafi, I., Daud, A.R., Radiman, S., Ghani, M.H.A. & Budi, S. (2013). Surfactant assisted electrodeposition of nanostructured CoNiCu alloys. J. Phys. Conf. Ser. 431(1), 1–6. DOI: 10.1088/1742-6596/431/1/012013.Open DOISearch in Google Scholar

15. Sivasubramanian, R. & Sangaranarayanan, M.V. (2015). A facile formation of silver dendrites on indium tin oxide surfaces using electrodeposition and amperometric sensing of hydrazine. Sensors Actuators, B: Chem. 213, 92–101. DOI: 10.1016/j.snb.2015.02.065.Open DOISearch in Google Scholar

16. Xia, L.T., Wei, G.Y., Li, M.G., Guo, H.F., Fu, Y. & Dettinger, H. (2014). Preparation of Co–Pt–P thin films by magnetic electrodeposition. Mater. Res. Innov. 18(5), 386–391. DOI: 10.1179/1433075X13Y.0000000154.Open DOISearch in Google Scholar

17. Zhou, Q., Wang, S., Jia, N., Liu, L., Yang, J. & Jiang, Z. (2006). Synthesis of highly crystalline silver dendrites microscale nanostructures by electrodeposition. Mater. Lett. 60(29–30), 3789–3792. DOI: 10.1016/j.matlet.2006.03.115.Open DOISearch in Google Scholar

18. Lee, J.K., Lee, J.S., Ahn, Y.S. & Kang, G.H. (2018). Effect of current density on morphology of silver thin film recovered from crystalline silicon solar cell by electrochemical process. Thin Solid Films 663, 143–147. DOI: 10.1016/j.tsf.2018.08.021.Open DOISearch in Google Scholar

19. Agrawal, V.V., Kulkarni, G.U. & Rao, C.N.R. (2008). Surfactant-promoted formation of fractal and dendritic nanostructures of gold and silver at the organic – aqueous interface. J. Coll. Interface Sci. 318(2), 501–506. DOI: 10.1016/j.jcis.2007.10.013.17996885Open DOISearch in Google Scholar

20. Budi, S., Tawwabin, R.A., Cahyana, U. & Paristiowati, M. (2020). Saccharin-assisted Galvanostatic Electrodeposition of Nanocrystalline FeCo Films on a Flexible Substrate. Int. J. Electrochem. Sci. 15, 6682–6694. DOI: 10.20964/2020.07.74.Open DOISearch in Google Scholar

21. Budi, S., Kurniawan, B., Mott, D.M., Maenosono, S., Umar, A.A. & Manaf, A. (2017). Comparative trial of saccharin-added electrolyte for improving the structure of an electrodeposited magnetic FeCoNi thin film. Thin Solid Films 642, 51–57. DOI: 10.1016/j.tsf.2017.09.017.Open DOISearch in Google Scholar

22. Jiang, G., Wang, L.I., Chen, T.A.O., Yu, H. & Wang, J. (2005). Preparation and characterization of dendritic silver nanoparticles. J. Mater. Sci. 40, 1681–1683. DOI: 10.1007/s10853-005-0669-9.Open DOISearch in Google Scholar

23. Liu, J., Wang, X., Lin, Z., Cao, Y., Zheng, Z., Zeng, Z & Hu, Z. (2014). Electrochimica Acta Shape-Controllable Pulse Electrodeposition of Ultrafine Platinum Nanodendrites for Methanol Catalytic Combustion and the Investigation of their Local Electric Field Intensification by Electrostatic Force Microscope and Finite Element M. Electrochim Acta 136, 66–74. DOI: 10.1016/j.electacta.2014.05.082.Open DOISearch in Google Scholar

24. Inamuddin. (2019). Xanthan gum/titanium dioxide nanocomposite for photocatalytic degradation of methyl orange dye. Int. J. Biol. Macromol. 121, 1046–1053. DOI: 10.1016/j.ijbiomac.2018.10.064.30336247Open DOISearch in Google Scholar

25. Yao, H., Li, F., Lutkenhaus, J., Kotaki, M. & Sue, H.J. (2016). High-performance photocatalyst based on nanosized ZnO-reduced graphene oxide hybrid for removal of Rhoda-mine B under visible light irradiation. AIMS Mater. Sci. 3(4), 1410–1425. DOI: 10.3934/matersci.2016.4.1410.Open DOISearch in Google Scholar

26. Cheng, Z.Q., Li, Z.L., Luo, X., Shi, H.Q., Luo, C.L., Liu, Z.M. & Nan, F. (2019). Enhanced second harmonic generation by double plasmon resonances in mesoscale flower-like silver particles. Appl. Phys. Lett. 114(1), 1–4. DOI: 10.1063/1.5079241.Open DOISearch in Google Scholar

27. Bu, Y. & Lee, S.W. (2015). Flower-like gold nanostructures electrodeposited on indium tin oxide (ITO) glass as a SERS-active substrate for sensing dopamine. Microchim. Acta 182(7–8), 1313–1321. DOI: 10.1007/s00604-015-1453-4.Open DOISearch in Google Scholar

28. Caglar, M. Ilican, S. Caglar, Y. & Yakuphanoglu, F. (2009). Electrical conductivity and optical properties of ZnO nanostructured thin film. Appl. Surf. Sci. 255(8), 4491–4496. DOI: https://doi.org/10.1016/j.apsusc.2008.11.055.10.1016/j.apsusc.2008.11.055Search in Google Scholar

29. Huang, J.H. Lin, C.H. & Yu, G.P. (2019). Texture evolution of vanadium nitride thin films. Thin Solid Films 688, 137-415. DOI: 10.1016/j.tsf.2019.137415.Open DOISearch in Google Scholar

30. Rakhi, R.B., Chen, W., Cha, D. & Alshareef, H.N. (2012). Substrate Dependent Self-Organization of Mesoporous Cobalt Oxide Nanowires with Remarkable Pseudocapacitance. Nano Lett 12, 2559–2567. DOI:10.1021/nl300779a22494065Search in Google Scholar

31. Yin, B., Zhang, S., Jiao, Y., Liu, Y., Qu, F. & Wu, X. (2014). Facile synthesis of ultralong MnO2 nanowires as high performance supercapacitor electrodes and photocatalysts with enhanced photocatalytic activities. Cryst. Eng. 16(43), 9999–10005. DOI: 10.1039/c4ce01302f.Open DOISearch in Google Scholar

32. Beura, R., Pachaiappan, R. & Thangadurai P. (2018). A detailed study on Sn4+doped ZnO for enhanced photocatalytic degradation. Appl. Surf. Sci. 433, 887–898. DOI: 10.1016/j.apsusc.2017.10.127.Open DOISearch in Google Scholar

33. Oraon, R., De Adhikari, A., Tiwari, S.K. & Nayak, G.C. (2016). Enhanced Specific Capacitance of Self-Assembled Three-Dimensional Carbon Nanotube/Layered Silicate/Poly-aniline Hybrid Sandwiched Nanocomposite for Supercapacitor Applications. ACS Sustain Chem. Eng. 4(3), 1392–1403. DOI: 10.1021/acssuschemeng.5b01389.Open DOISearch in Google Scholar

34. Daraghmeh, A., Hussain, S., Saadeddin, I., Servera, L., Xuriguera, E., Cornet, A. & Cirera, A. (2017). A Study of Carbon Nanofibers and Active Carbon as Symmetric Supercapacitor in Aqueous Electrolyte: A Comparative Study. Nanoscale Res. Lett. 12(639), 1–10. DOI: 10.1186/s11671-017-2415-z.574756329288337Open DOISearch in Google Scholar

35. Mishra, N., Shinde, S., Vishwakarma, R., Kadam, S., Sharon, M. & Sharon, M. (2013). MWCNTs synthesized from waste polypropylene plastics and its application in super-capacitors. AIP Conf. Proc. 1538, 228–236. DOI: 10.1063/1.4810063.Open DOISearch in Google Scholar

36. Arul, N.S., Mangalaraj, D., Ramachandran, R., Grace, A.N. & Han, J.I. (2015). Fabrication of CeO2/Fe2O3 composite nanospindles for enhanced visible light driven photocatalysts and supercapacitor electrodes. J. Mater. Chem. A: 3(29), 15248–15258. DOI: 10.1039/c5ta02630j.Open DOISearch in Google Scholar

eISSN:
1899-4741
Język:
Angielski
Częstotliwość wydawania:
4 razy w roku
Dziedziny czasopisma:
Industrial Chemistry, Biotechnology, Chemical Engineering, Process Engineering