Otwarty dostęp

In situ thermal decomposition route: Preparation and characterization of nano nickel, cobalt, and copper oxides using an aromatic amine complexes as a low-cost simple precursor


Zacytuj

1. Noller, C.R. (1960). Textbook of Organic Chemistry, Springer Verlag.Search in Google Scholar

2. Hunger, K. & Herbst, W. (2012). “Pigments, Organic” in Ullmann’s Encyclopedia of Industrial Chemistry, Wiley-VCH, Weinheim, DOI: 10.1002/14356007.a20_371.Open DOISearch in Google Scholar

3. Ahangaran, F. & Navarchian, A.H. (2020). Recent advances in chemical surface modification of metal oxide nanoparticles with silane coupling agents: A review. Adv. Colloid. Interface Sci. 286. 102298. DOI: 10.1016/j.cis.2020.102298.33171357Open DOISearch in Google Scholar

4. Rahal, H.T., Awad, R., Abdel Gaber, A.M. & Bakeer, D. (2017). Synthesis, characterization, and magnetic properties of pure and EDTA-capped NiO nanosized particles. J. Nano-materials, 2017, 9. DOI: 10.1155/2017/7460323.Open DOISearch in Google Scholar

5. Al Boukhari, J., Zeidan, L., Khalaf, A. & Awad, R. (2019). Synthesis, characterization, optical and magnetic properties of pure and Mn, Fe and Zn doped NiO nanoparticles. J. Chem. Phys., 516, 116–124. DOI: 10.1016/j.chemphys.2018.07.046.Open DOISearch in Google Scholar

6. Meng, F., Shi, W., Sun, Y., Zhu, X., Wu, G., Ruan, C., Liu, X. & Ge, D. (2013). Nonenzymatic biosensor based on CuxO nanoparticles deposited on polypyrrole nanowires for improving detectionrange. J. Biosens. Bioelectr., 42, 141–147. DOI: 10.1016/j.bios.2012.10.051.23202344Open DOISearch in Google Scholar

7. Gao, Q., Zeng, W. & Miao, R. (2016). Synthesis of multifarious hierarchical flower-like NiO and their gas-sensing properties. J. Mat. Sci. Mat. Electron., 27(9), 9410–9416. DOI: 10.1007/s10854-016-4986-3.Open DOISearch in Google Scholar

8. Koh, I. & Josephson, L. (2009). Magnetic nanoparticle sensors. J. Sensors, 9(10), 8130–8145. DOI: 10.3390/s91008130.329210022408498Open DOISearch in Google Scholar

9. Nur, S., Yazid, A.M., Md Isa, I., Abu Bakar, S., Hashim, N. & Ab Ghani, S. (2014). A review of glucose biosensors based on graphene/metal oxide nanomaterials. Analyt. Lett., 47(11), 1821–1834. DOI: 10.1080/00032719.2014.888731.Open DOISearch in Google Scholar

10. Wu, R., Wu, J., Yu, M., Tsai, T. & Yeh, C. (2008). Applications of Semiconducting Metal Oxides Gas Sensors. Sens. Actu. B: Chem., 131, 306–312. DOI: 10.1016/j.snb.2007.11.033.Open DOISearch in Google Scholar

11. Mate, V.R., Shirai, M., & Rode, C.V. (2013). Heterogeneous Co3O4 catalyst for selective oxidation of aqueous veratryl alcohol using molecular oxygen. Catal. Commun., 33, 66–69. DOI: 10.1016/j.catcom.2012.12.015.Open DOISearch in Google Scholar

12. Maruyama, T., & Arai, S. (1996). Electrochromic properties of cobalt oxide thin films prepared by chemical vapor deposition. J. Electrochem. Soc., 143, 1383–1386. DOI: 10.1149/1.1836646.Open DOISearch in Google Scholar

13. Li, Y.G., Tan, B. & Wu, Y.Y. (2008). Mesoporous Co3O4 Nanowire Arrays for Lithium Ion Batteries with High Capacity and Rate Capability. Nano Lett., 8, 265–270. DOI: 10.1021/nl0725906.18072799Open DOISearch in Google Scholar

14. Wang, R.M., Liu, C.M., Zhang, H.Z., Chen, C.P., Guo, L., Xu, H.B. & Yang, S.H. (2004). Porous nanotubes of Co3O4: Synthesis, characterization, and magnetic properties. Appl. Phys. Lett., 85, 2080–2082. DOI: 10.1063/1.1789577.Open DOISearch in Google Scholar

15. Lou, X., Han, J., Chu, W., Wang, X. & Cheng, Q. (2007). Synthesis and photocatalytic property of Co3O4 nanorods. Mater. Sci. Eng., B: 137, 268–271. DOI: 10.1016/j.mseb.2006.12.002.Open DOISearch in Google Scholar

16. Warang, T., Patel, N., Santini, A., Bazzanella, N., Kale, A. & Miotello, A. (2012). Pulsed laser deposition of Co3O4 nano-particles assembled coating: Role of substrate temperature to tailor disordered to crystalline phase and related photocatalytic activity in degradation of methylene blue. Appl. Catal. A: Gen. 423–424, 21–27. DOI: 10.1016/j.apcata.2012.02.037.Open DOISearch in Google Scholar

17. Sun, H., Ahmad, M. & Zhu, J. (2013). Morphology-controlled synthesis of Co3O4 porous nanostructures for the application as lithium-ion battery electrode. Electrochim. Acta, 89, 199–205. DOI: 10.1016/j.electacta.2012.10.116.Open DOISearch in Google Scholar

18. Lester, E., Aksomaityte, G., Li, J. & Gomez, S. (2012). Controlled continuous hydrothermal synthesis of cobalt oxide (Co3O4) nanoparticles. Prog. Cryst. Growth Charact. Mater. 58, 3–13. DOI: 10.1016/j.pcrysgrow.2011.10.008.Open DOISearch in Google Scholar

19. Gardey-Merin, M.C., Palermo, O.M., Belda, R., Fernández de Rapp, M.E., E. Lascalea, G. & Vázquez, P.G. (2012). Combustion synthesis of Co3O4 nanoparticles: fuel ratio effect on the physical properties of the resulting powders. Proced. Mater. Sci., 1, 588–593. DOI: 10.1016/j.mspro.2012.06.079.Open DOISearch in Google Scholar

20. Bhatt, A.S., Bhat, D.K., Tai, C.W. & Santosh, M.S. (2011). Microwave-assisted synthesis and magnetic studies of cobalt oxide nanoparticles. Mater. Chem. Phys., 125, 347–350. DOI: 10.1016/j.matchemphys.2010.11.003.Open DOISearch in Google Scholar

21. Baydi, M.E., Poillerat, G., Rehspringer, J.L., Gautier, J.L., Koenig, J.F. & Chartier, P. (1994). A sol-gel route for the preparation of Co3O4 catalyst for oxygen electrocatalysis in alkaline medium. J. Solid State Chem., 109, 281–288. DOI: 10.1006/jssc.1994.1105.Open DOISearch in Google Scholar

22. Kim, D.Y., Ju, S.H., Koo, H.Y., Hong, S.K. & Kangf, Y.C. (2006). Synthesis of nanosized Co3O4 particles by spray pyrolysis. J. Alloys Compd., 417, 254–258. DOI: 10.1016/j.jallcom.2005.09.013.Open DOISearch in Google Scholar

23. Kumar, R.V., Diamant, Y. & Gedanken, A. (2000). Sonochemical synthesis and characterization of nanometer-size transition metal oxides from metal acetates. Chem. Mater., 12, 2301–2305. DOI: 10.1021/cm000166z.Open DOISearch in Google Scholar

24. Sinko, K., Szabo, G. & Zrinyi, M. (2011). Liquid-phase synthesis of cobalt oxide nanoparticles. J. Nanosci. Nanotechnol., 11, 1–9. DOI: 10.1166/jnn.2011.3875.21780416Open DOISearch in Google Scholar

25. Zou, D., Xu, C., Luo, H., Wang, L. & Ying, T. (2008). Synthesis of Co3O4 nanoparticles via an ionic liquid-assisted methodology at room temperature. Mater. Lett., 62, 1976–1978. DOI: 10.1016/j.matlet.2007.10.056.Open DOISearch in Google Scholar

26. Jiang, J. & Li, L. (2007). Synthesis of sphere-like Co3O4 nanocrystals via a simple polyol route. Mater. Lett., 6, 4894–4896. DOI: 10.1016/j.matlet.2007.03.067.Open DOISearch in Google Scholar

27. Fan, S., Liu, X., Li, Y., Yan, E., Wang, C., Liu, J. & Zhang, Y. (2013). Non-aqueous synthesis of crystalline Co3O4 nanoparticles for lithium-ion batteries. Mater. Lett., 91, 291–293. DOI: 10.1016/j.matlet.2012.10.008.Open DOISearch in Google Scholar

28. Masoomi, M.Y. & Morsali, A. (2012). Applications of metal–organic coordination polymers as precursors for preparation of nano-materials. Coord. Chem. Rev., 256, 2921–2943. DOI: 10.1016/j.ccr.2012.05.032.Open DOISearch in Google Scholar

29. El-Trass, A., Elshamy, H., El-Mehasseb, I. & El-Kemary, M. (2012). CuO nanoparticles: synthesis, characterization, optical properties and interaction with amino acids. Appl. Sur. Sci., 258(7), 2997–3001. DOI: 10.1016/j.apsusc.2011.11.025.Open DOISearch in Google Scholar

30. Refat, M.S. (2007). Complexes of uranyl(II), vanadyl(II) and zirconyl(II) with orotic acid “vitamin B13”: Synthesis, spectroscopic, thermal studies and antibacterial activity. J. Mol. Struct., 842(1–3), 24–37. DOI: 10.1016/j.molstruc.2006.12.006.Open DOISearch in Google Scholar

31. Nakamoto, K. (1997). Infrared and Raman Spectra of Inorganic and Coordination Compounds, Wiley, New York.Search in Google Scholar

32. Lever, A.B.P. & Mantovani, E. (1971). Far-infrared and electronic spectra of some bis(ethylenediamine) and related complexes of copper(II) and the relevance of these data to tetragonal distortion and bond strengths. Inorg. Chem., 10, 817–826. DOI: 10.1021/ic50098a031.Open DOISearch in Google Scholar

33. Lever, A.B.P. (1968). Inorganic Electronic Spectroscopy, Elsevier, Amsterdam, (1968).Search in Google Scholar

34. Waseda, Y., Matsubara, E. & Shinoda, K. (2011). X-Ray Diffraction Crystallography. Verlag, Berlin Heidelberg: Springer. DOI: 10.1007/978-3-642-16635-8.Open DOISearch in Google Scholar

35. Kolhatkar, A., Jamison, A., Litvinov, D., Willson, R. & Lee, T. (2013). Tuning the magnetic properties of nano-particles. Int. J. Mol. Sci., 14(8), 15977–16009. DOI: 10.3390/ijms140815977.375989623912237Open DOISearch in Google Scholar

36. Rifaya, M.N., Theivasanthi, T. & Alagar, M. (2012). Chemical capping synthesis of nickel oxide nanoparticles and their characterizations studies. Nanosc. Nanotechnol., 2(2), 134–138. DOI: 10.5923/j.nn.20120205.01.Open DOISearch in Google Scholar

37. Farhadi, S., Javanmard, M. & Nadri, G. (2016). Characterization of cobalt oxide nanoparticles prepared by the thermal decomposition. Acta Chim. Slov., 63, 335–343. DOI: 10.17344/acsi.2016.2305.Open DOISearch in Google Scholar

38. Tamaekong, N., Liewhiran, C. & Phanichphant, S. (2014). Synthesis of thermally spherical CuO nanoparticles. J. Nanomaterials, 2014, Article ID 507978, 5 pages. DOI: 10.1155/2014/507978.Open DOISearch in Google Scholar

eISSN:
1899-4741
Język:
Angielski
Częstotliwość wydawania:
4 razy w roku
Dziedziny czasopisma:
Industrial Chemistry, Biotechnology, Chemical Engineering, Process Engineering