Otwarty dostęp

A mathematical model of two-stage Solid Oxide Fuel Cell, SOFC, stacks for dynamic simulation of Combined Heat and Power system fed by natural gas


Zacytuj

1. Tu, B., Wen, H., Yin, Y., Zhang, F., Su, X., Cui, D. & Cheng, M. (2020). Thermodynamic analysis and experimental study of electrode reactions and open circuit voltage for methane-fuelled SOFC. Internat. J. Hydrog. Energy, 45, 58, 34069–34079. DOI: 10.1016/j.ijhydene.2020.09.088.Open DOISearch in Google Scholar

2. Lee, K., Kang, S. & Ahn, K.Y. (2017). Development of a highly efficient solid oxide fuel cell system. Appl. Energy, 205, 822–833. DOI: 10.1016/j.apenergy.2017.08.070.Open DOISearch in Google Scholar

3. Nanaeda, K., Mueller, F., Brouwer, J. & Samuelsen, S. (2010). Dynamic modeling and evaluation of solid oxide fuel cell – combined heat and power system operating strategies. J. Power Sourc., 195, 3176–3185. DOI: 10.1016/j.jpowsour.2009.11.137.Open DOISearch in Google Scholar

4. Ferrari, M.L. (2015). Advanced control approach for hybrid systems based on solid oxide fuel cells. Appl. Energy, 145, 364–373. DOI: 10.1016/j.apenergy.2015.02.059.Open DOISearch in Google Scholar

5. Magistri, L., Traverso, A.F. & Shah, R.K. (2005). Heat Exchangers for Fuel Cell and Hybrid System Applications. J. Fuel Cell Sci. Technol., 3(2), 111–118. DOI: 10.1115/1.2173665.Open DOISearch in Google Scholar

6. Santis-Alvarez, A.J., Nabavi, M., Hild, N., Poulikakos, D. & Stark, W.J. (2011). A fast hybrid start-up process for thermally self-sustained catalytic n-butane reforming in micro-SOFC power plants. Energy & Environ. Sci., 4, 3041–3050. DOI: 10.1039/C1EE01330K.Open DOISearch in Google Scholar

7. Padulles, J., Ault, G.W. & McDonald, J.R. (2000). An integrated SOFC plant dynamic model for power systems simulation. J. Power Sourc., 86, 495–500. DOI: S0378-7753(99)00430-9.Open DOISearch in Google Scholar

8. D’Andrea, G., Gandiglio, M., Lanzini, A. & Santarelli, M. (2017). Dynamic model with experimental validation of a biogas-fed SOFC plant. Energy Convers. Manag., 135, 21–34. DOI: 10.1016/j.enconman.2016.12.063.10.1016/j.enconman.2016.12.063Search in Google Scholar

9. Wang, Y., Wehrle, L., Banerjee, A., Shi, Y. & Deutschmann, O. (2021). Analysis of a biogas-fed SOFC CHP system based on multi-scale hierarchical modeling. Renewable Energy, 163, 78–87. DOI: 10.1016/j.renene.2020.08.091.Open DOISearch in Google Scholar

10. Kakac, S., Pramuanjaroenkij, A. & Zhou, X.Y. (2007). A review of numerical modeling of solid oxide fuel cells. Internat. J. Hydrog. Energy, 32, 761–786. DOI: 10.1016/j.ijhydene.2006.11.028.Open DOISearch in Google Scholar

11. Ghorbani B. & Vijayaraghavan K. (2019). A review study on software-based modeling of hydrogen-fueled solid oxide fuel cells. Internat. J. Hydrogen Energy, 44, 13700–13727. DOI: 10.1016/j.ijhydene.2019.03.217.Open DOISearch in Google Scholar

12. Grew, K.N. & Chiu W.K.S. (2012). A review of modeling and simulation techniques across the length scales for the solid oxide fuel cells. J. Power Sourc., 199, 1–13. DOI: 10.1016/j.jpowsour.2011.10.010.Open DOISearch in Google Scholar

13. Safari, A., Shahsavari, H. & Salehi, J. (2018). A mathematical model of SOFC power plant for dynamic simulation of multi-machine power systems. Energy, 149, 397–413. DOI: 10.1016/j.energy.2018.02.068.Open DOISearch in Google Scholar

14. Mehr, A.S., MosayebNezhad, M., Lanzini, A., Yari, M., Mahmoudi, S.M.S. & Santarelli, M. (2018). Thermodynamic assessment of a novel SOFC based CCHP system in a waste-water treatment plant. Energy, 150, 299–309. DOI: 10.1016/j.energy.2018.02.102.Open DOISearch in Google Scholar

15. Posdziech, O. System concepts and BoP components, Staxera/sunfire GmBH, http://slideplayer.com/slide/8883912/Search in Google Scholar

16. Bachman, J., Posdziech, O., Pianko-Oprych, P., Kaisalo, N. & Pennanen, J. (2017). Development and testing of innovative SOFC system prototype with staged stack connection for efficient stationary power and heat generation. ECS Transactions, 78, 1, 133–144. DOI: 10.11490/07801.0133ecst.Open DOISearch in Google Scholar

17. Zhang, W., Croiset, E., Douglas, P.L., Fowler, M.W. & Entchev, E. (2005). Simulation of a tubular solid oxide fuel cell stack using Aspen Plus unit operation models. Energy Convers, Manag., 46, (2), 181–196. DOI: 10.1016/j.enconman.2004.03.002.Open DOISearch in Google Scholar

18. STAGE-SOFC: Innovative SOFC system layout for stationary power and CHP applications, EU Project, internal report. 1.04.2014.Search in Google Scholar

19. Huangfu, Y., Gao, F., Abbas-Turki, A., Bouquain, D. & Miraoui, A. (2013). Transient dynamic and modeling parameter sensitivity analysis of 1D solid oxide fuel cell model, Energy Convers. Manag., 71, 172–185. DOI: 10.1016/j.enconman.2013.03.029.Open DOISearch in Google Scholar

20. Yang, F., Zhu, X.J. & Cao, G.Y. (2007). Nonlinear fuzzy modeling of a MCFC stack by identification method. J. Power Sourc., 166, 354–361. DOI: 10.1016/j.jpowsour.2007.01.062.Open DOISearch in Google Scholar

21. Cali, M., Santarelli, M.G.L. & Leone, P. (2006). Computer experimental analysis of the CHP performance of a 100 kWe SOFC field unit by a factorial design. J. Power Sourc., 156, 400–413. DOI: 10.1016/j.jpowsour.2005.06.033.Open DOISearch in Google Scholar

22. Todd, B. & Young, J.B. (2002). Thermodynamic and transport properties for solid oxide fuel cell modelling. J. Power Sourc., 110, 186–200. DOI: 10.1016/S0378-7753(02)00277-X.Open DOISearch in Google Scholar

23. Janardhanan, V.M. & Deutschmann, O. (2006). CFD analysis of a solid oxide fuel cell with internal reforming: Coupled interactions of transport, heterogeneous catalysis and electrochemical processes. J. Power, Sourc., 162, 1192–1202. DOI: 10.1016/j.jpowsour.2006.08.017.Open DOISearch in Google Scholar

eISSN:
1899-4741
Język:
Angielski
Częstotliwość wydawania:
4 razy w roku
Dziedziny czasopisma:
Industrial Chemistry, Biotechnology, Chemical Engineering, Process Engineering