Zacytuj

1. United States Environmental Protection Agency USEPA (2019). Greenhouse Gas Emissions. Retrieved May 26, 2020, from https://www.epa.gov/ghgemissions/overview-greenhouse-gases#carbon-dioxide.Search in Google Scholar

2. Parshetti, G.K., Chowdhury, S. & Balasubramanian, R. (2015). Biomass derived low-cost microporous adsorbents for efficient CO2 capture. Fuel 148, 246–254. DOI: 10.1016/j. fuel.2015.01.032.Search in Google Scholar

3. Babu, D.J., Bruns, M. & Schneider, J.J. (2017). Unprecedented CO2 uptake in vertically aligned carbon nanotubes. Carbon 125, 327–335. DOI: 10.1016/j.carbon.2017.09.047.10.1016/j.carbon.2017.09.047Search in Google Scholar

4. Samanta, A., Zhao, A., Shimizu, G.K.H., Sarkar, P. & Gupta, R. (2012). Post-combustion CO2 capture using solid sorbents: a review. Ind. Eng. Chem. Res. 51, 1438–1463. DOI: 10.1021/ie200686q.10.1021/ie200686qSearch in Google Scholar

5. Wang, J., Huang, L., Yang, R., Zhang, Z., Wu, J., Gao, Y., Wang, Q., O’Hare, D. & Zhong, Z. (2014). Recent advances in solid sorbents for CO2 capture and new development trends. Energy Environ. Sci. 7, 3478–3518. DOI: 10.1039/C4EE01647E.10.1039/C4EE01647ESearch in Google Scholar

6. Srenscek-Nazzal, J., Narkiewicz, U., Morawski, A.W., Wrobel, R.J., Gesikiewicz-Puchalska, A. & Michalkiewicz, B. (2016). Modification of Commercial Activated Carbons for CO2 Adsorption. Acta Phys. Pol. A 129, 394–401. DOI: 10.12693/APhysPolA.129.394.10.12693/APhysPolA.129.394Search in Google Scholar

7. Lendzion-Bielun, Z., Czekajlo, L., Sibera, D., Moszynski, D., Srenscek-Nazzal, J., Morawski, A.W., Wrobel, R.J., Michalkiewicz, B., Arabczyk, W. & Narkiewicz, U. (2018). Surface characteristics of KOH-treated commercial carbons applied for CO2 adsorption. Adsorpt. Sci. Technol. 36, 478–492. DOI: 10.1177/0263617417704527.10.1177/0263617417704527Search in Google Scholar

8. Gęsikiewicz-Puchalska, A., Zgrzebnicki, M., Michalkiewicz, B., Narkiewicz, U., Morawski, A.W. & Wróbel, R.J. (2017). Improvement of CO2 uptake of activated carbons by treatment with mineral acids. Chem. Eng. J. 309, 159–171. DOI: 10.1016/j.cej.2016.10.005.10.1016/j.cej.2016.10.005Search in Google Scholar

9. Zgrzebnicki, M., Krauze, N., Gęsikiewicz-Puchalska, A., Kapica-Kozar, J., Piróg, E., Jędrzejewska, A., Michalkiewicz, B., Narkiewicz, U., Morawski, A.W. & Wróbel, R.J. (2017). Impact on CO2 Uptake of MWCNT after Acid Treatment Study. J. Nanomater., 1–11. DOI: 10.1155/2017/7359591.10.1155/2017/7359591Search in Google Scholar

10. Li, J.R., Kuppler, R.J. & Zhou, H.C. (2009). Selective gas adsorption and separation in metal-organic Framework. Chem. Soc. Rev. 38, 1477–1504. DOI: 10.1039/B802426J.10.1039/b802426j19384449Search in Google Scholar

11. Liu, J., Thallapally, P.K., McGrail, B.P., Brown, D.R. & Liu, J. (2012). Progress in adsorption-based CO2 capture by metal-organic Framework. Chem. Soc. Rev. 41, 2308–2322. DOI: 10.1039/C1CS15221A.10.1039/C1CS15221A22143077Search in Google Scholar

12. Kukulka, W., Cendrowski, K., Michalkiewicz, B., & Mijowska, E. (2019). MOF-5 derived carbon as material for CO2 absorption. Rsc. Adv. 9, 18527–18537. DOI: 10.1039/C9RA01786K.10.1039/C9RA01786KSearch in Google Scholar

13. D’Alessandro, D.M., Smit, B. & Long J.R. (2010). Carbon dioxide capture: prospects for new materials. Angew. Chem. Int. Ed. Engl. 49, 6058–6082. DOI: 10.1002/anie.201000431.10.1002/anie.201000431Search in Google Scholar

14. Marsh, H. & Reinoso F.R. (2006). Activated Carbon. London, England: Elsevier Science.Search in Google Scholar

15. Serafin, J., Narkiewicz, U., Morawski, A.W., Wróbel, R.J. & Michalkiewicz, B. (2017). Highly microporous activated carbons from biomass for CO2 capture and effective micropores at different conditions. J. CO2 Util. 18, 73–79. DOI: 10.1016/j. jcou.2017.01.006.Search in Google Scholar

16. Sreńscek-Nazzal, J., Narkiewicz, U., Morawski, A.W., Wróbel, R.J. & Michalkiewicz, B. (2015). Comparison of Optimized Isotherm Models and Error Functions for Carbon Dioxide Adsorption on Activated Carbon. J. Chem. Eng. Data. 60, 3148–3158. DOI: 10.1021/acs.jced.5b00294.10.1021/acs.jced.5b00294Search in Google Scholar

17. Młodzik, J., Sreńscek-Nazzal, J., Narkiewicz, U., Morawski, A.W., Wróbel, R.J. & Michalkiewicz, B. (2016). Activated Carbons from Molasses as CO2 Sorbents. Acta Phys. Pol. A. 129, 402–404. DOI: 10.12693/APhysPolA.129.402.10.12693/APhysPolA.129.402Search in Google Scholar

18. Sibera, D., Narkiewicz, U., Kapica, J., Serafin, J., Michalkiewicz, B., Wrobel, R.J. & Morawski, A.W. Preparation and characterisation of carbon spheres for carbon dioxide capture (2019). J. Porous Mater. 26, 19–27. DOI: 10.1007/s10934-018-0601-8.10.1007/s10934-018-0601-8Search in Google Scholar

19. Shi, X., Gong, J., Kierzek, K., Michalkiewicz, B., Zhang, S., Chu, P.K., Chen, X., Tang, T. & Mijowska, E. (2019) Multifunctional nitrogen-doped nanoporous carbons derived from metal-organic frameworks for efficient CO2 storage and high-performance lithium-ion batteries. New J. Chem. 43, 10405–10412. DOI: doi.org/10.1039/C9NJ01542F.10.1039/C9NJ01542FSearch in Google Scholar

20. Gong, J., Michalkiewicz, B., Chen, X., Mijowska, E., Liu, J., Jiang, Z., Wen, X. & Tang, T. (2014). Sustainable Conversion of Mixed Plastics into Porous Carbon Nanosheets with High Performances in Uptake of Carbon Dioxide and Storage of Hydrogen. ASC Sustain. Chem. Eng. 2, 2837–2844. DOI: 10.1021/sc500603h.10.1021/sc500603hSearch in Google Scholar

21. Melo, P., Debecker, D.P. (2019). Combining CO2 capture and catalytic conversion to methane. Waste Dispos. Sustain. Energy 1, 53–65. DOI: 10.1007/s42768-019-00004-0.10.1007/s42768-019-00004-0Search in Google Scholar

22. Taqiu Khan, M.M., Halligudi, S.B., Shukla, S. (1989). Reduction of CO2 by molecular hydrogen to formic acid and formaldehyde and their decomposition to CO and H2O. J. Mol. Catal. 57, 47–60. DOI: 10.1016/0304-5102(89)80126-9.10.1016/0304-5102(89)80126-9Search in Google Scholar

23. Michalkiewicz, B., Majewska, J., Kądziołka, G., Bubacz, K., Mozia, S. & Morawski, A.W. (2014). Reduction of CO2 by adsorption and reaction on surface of TiO2-nitrogen modified photocatalyst. J. CO2 Util. 5, 47–52. DOI: 10.1016/j. jcou.2013.12.004.Search in Google Scholar

24. Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt, K. B., Tignor M. & Miller H.L. (2007). Climate Change 2007: The Physical Science Basis Exit. Contribution of Working Group I to the Fourth Assessment Report of the Inter-governmental Panel on Climate Change. Cambridge, United Kingdom: Cambridge University Press.Search in Google Scholar

25. Shalini, A. & Prasad, R. (2016). An overview on dry reforming of methane: strategies to reduce carbonaceous deactivation of catalysts. RSC Adv. 6, 108668–108688. DOI: 10.1039/C6RA20450C.10.1039/C6RA20450CSearch in Google Scholar

26. Michalkiewicz, B., Sreńscek-Nazzal, J. & Ziebro, J. (2009). Optimization of Synthesis Gas Formation in Methane Reforming with Carbon Dioxide. Catal. Lett. 129, 142–148. DOI: 10.1007/s10562-008-9797-6.10.1007/s10562-008-9797-6Search in Google Scholar

27. Michalkiewicz, B. (2004). Partial oxidation of methane to formaldehyde and methanol using molecular oxygen over Fe-ZSM-5. Appl. Catal., A. 277, 147–153. DOI: 10.1016/j. apcata.2004.09.005.Search in Google Scholar

28. Michalkiewicz, B. & Kałucki, K. (2002). Direct conversion of methane into methanol formaldehyde and organic acids. Przem. Chem. 81, 165–170.Search in Google Scholar

29. Michalkiewicz, B. (2005). Kinetics of partial methane oxidation process over the Fe-ZSM-5 catalysts. Chem. Pap. – Chem. Zvesti. 59, 403–408. DOI: 10.1016/j.apcata.2004.09.00510.1016/j.apcata.2004.09.005Search in Google Scholar

30. Michalkiewicz, B., Sreńscek-Nazzal, J., Tabero, P., Grzmil, B. & Narkiewicz, U. (2008). Selective methane oxidation to formaldehyde using polymorphic T-, M-, and H-forms of niobium(V) oxide as catalysts. Chem. Pap. – Chem. Zvesti. 62, 106–113. DOI: 10.2478/s11696-007-0086-4.10.2478/s11696-007-0086-4Search in Google Scholar

31. Michalkiewicz, B. (2006). The kinetics of homogeneous catalytic methane oxidation. Appl. Catal., A. 307, 270–274. DOI: 10.1016/j.apcata.2006.04.006.10.1016/j.apcata.2006.04.006Search in Google Scholar

32. Michalkiewicz, B., Kałucki, K. & Sośnicki, J.G. (2003). Catalytic system containing metallic palladium in the process of methane partial oxidation. J. Catal. 215, 14–19. DOI: 10.1016/S0021-9517(02)00088-X.10.1016/S0021-9517(02)00088-XSearch in Google Scholar

33. Michalkiewicz, B., Jarosińska, M. & Łukasiewicz, I. (2009). Kinetic study on catalytic methane esterification in oleum catalyzed by iodine. Chem. Eng. J. 154, 156–161. DOI: 10.1016/j.cej.2009.03.046.10.1016/j.cej.2009.03.046Search in Google Scholar

34. Michalkiewicz, B. & Kosowski, P. (2007). The selective catalytic oxidation of methane to methyl bisulfate at ambitne pressure. Catal. Commun. 8, 1939–1942. DOI: 10.1016/j.catcom.2007.03.014.10.1016/j.catcom.2007.03.014Search in Google Scholar

35. Majewska, J. & Michalkiewicz, B. (2014). Carbon nanomaterials produced by the catalytic decomposition of methane over Ni/ZSM-5 Significance of Ni content and temperature. New Carbon Mater. 29, 102–108. DOI: 10.1016/S1872-5805(14)60129-3.10.1016/S1872-5805(14)60129-3Search in Google Scholar

36. Ziebro, J., Łukasiewicz, I., Borowiak-Palen, E. & Michalkiewicz, B. (2010). Low temperature growth of carbon nanotubes from methane catalytic decomposition over nickel supported on a zeolite. Nanotechnology 21, 1–6. DOI: 10.1088/0957-4484/21/14/145308.10.1088/0957-4484/21/14/14530820234080Search in Google Scholar

37. Ziebro, J., Łukasiewicz, I., Grzmil, B., Borowiak-Palen, E. & Michalkiewicz, B. (2009). Synthesis of nickel nanocapsules and carbon nanotubes via methane CVD. J. Alloys Compd. 485, 695–700. DOI: 10.1016/j.jallcom.2009.06.039.10.1016/j.jallcom.2009.06.039Search in Google Scholar

38. Majewska, J. & Michalkiewicz, B. (2016). Preparation of Carbon Nanomaterials over Ni/ZSM-5 Catalyst Using Simplex Method Algorithm. Acta Phys. Pol., A. 129, 153–157. DOI: 10.12693/APhysPolA.129.153.10.12693/APhysPolA.129.153Search in Google Scholar

39. Börjesson, P., Lantz, M., Andersson, J., Björnsson, L., Möller, B.F., Fröberg, M., Hanarp, P., Hulteberg, C., Iverfeldt, E., Lundgren, J., Röj, A., Svensson, H. & Zinn, E. (2016). Methane as vehicle fuel – a well to wheel analysis (METDRIV). DOI: 10.13140/rg.2.2.24258.79045Search in Google Scholar

40. Sreńscek-Nazzal, J., Kamińska, W., Michalkiewicz, B. & Koren, Z.C. (2013). Production, characterization and methane storage potential of KOH-activated carbon from sugarcane molasses. Ind. Crop. Prod. 47, 153–159. DOI: 10.1016/j.ind-crop.2013.03.004.Search in Google Scholar

41. Wenelska, K., Michalkiewicz, B., Gong, J., Tang, T., Kaleńczuk, R., Chen, X. & Mijowska, E. (2013). In situ deposition of Pd nanoparticles with controllable diameters in hollow carbon spheres for hydrogen storage. Int. J. Of Hydrogen Energy 38, 16179–16184. DOI: 10.1016/j.ijhydene.2013.10.008.10.1016/j.ijhydene.2013.10.008Search in Google Scholar

42. Wenelska, K., Michalkiewicz, B., Chen, X. & Mijowska, E. (2014). Pd nanoparticles with tunable diameter deposited on carbon nanotubes with enhanced hydrogen storage capacity. Energy 75, 549–554. DOI: 10.1016/j.energy.2014.08.016.10.1016/j.energy.2014.08.016Search in Google Scholar

43. Grams, J., Potrzebowska, N., Goscianska, J., Michalkiewicz, B. & Ruppert, A.M. (2016) Mesoporous silicas as supports for Ni catalyst used in cellulose conversion to hydrogen rich gas. Int. J. Hydrogen Energy 41, 8656–8667. DOI: 10.1016/j. ijhydene.2015.12.146.Search in Google Scholar

44. Młodzik, J., Wróblewska, A., Makuch, E., Wróbel, R.J. & Michalkiewicz, B. (2016). Fe/EuroPh catalysts for limonene oxidation to 1,2-epoxylimonene, its diol, carveol, carvone and perillyl alcohol. Catal. Today 268, 111–120. DOI: 10.1016/j. cattod.2015.11.010.Search in Google Scholar

45. Wróblewska, A., Makuch, E., Młodzik, J., Koren, Z.C. & Michalkiewicz, B. (2017). Fe/Nanoporous Carbon Catalysts Obtained from Molasses for the Limonene Oxidation Process. Catal. Lett. 147, 150–160. DOI: 10.1007/s10562-016-1910-7.10.1007/s10562-016-1910-7Search in Google Scholar

46. Wróblewska, A., Makuch, E., Młodzik, J. & Michalkiewicz, B. (2017). Fe-carbon nanoreactors obtained from molasses as efficient catalysts for limonene oxidation. Green Process. Synth. 6, 397–401. DOI: 10.1515/gps-2016-0148.10.1515/gps-2016-0148Search in Google Scholar

47. Gómez-Pozuelo, G., Sanz-Pérez, E.S., Arencibia, A., Pizarro, P., Sanz, R. & Serrano, D.P. (2019) CO2 adsorption on amine-functionalized clays. Microporous Mesoporous Mater. 282, 38–47. DOI: 10.1016/j.micromeso.2019.03.012.10.1016/j.micromeso.2019.03.012Search in Google Scholar

48. Konuklu, Y., Ersoy, O., Akar, H.B. & Erzin, F. (2020). Effect of pre-treatment methods on natural raw materials-based phase change material composites for building applications. Constr. Build Mater. 263, 1–15. DOI: 10.1016/j. conbuildmat.2020.120114.Search in Google Scholar

49. Ruiz-Hitzky, E., Aranda, P., Alvarez, A., Santaren, J. & Esteban-Cubillo, A. (2011). Chapter 17 – Advanced Materials and New Applications of Sepiolite and Palygorskite. Dev. Clay Sci. 3, 393–452. DOI: 10.1016/B978-0-444-53607-5.00017-7.10.1016/B978-0-444-53607-5.00017-7Search in Google Scholar

50. Azzouz, A., Assaad, E., Ursu, A-V., Sajin, T., Nistor D. & Roy, R. (2010). Carbon dioxide retention over montmorillonite–dendrimer materials. Appl. Clay Sci. 48, 133–137. DOI: 10.1016/j.clay.2009.11.021.10.1016/j.clay.2009.11.021Search in Google Scholar

51. Elkhalifah, A.E.I., Bustam, M.A.B., Shariff, A.B.M. & Murugesan, T. (2014). Carbon dioxide retention on bentonite clay adsorbents modified by mono-, Di- and triethanolamine compounds. Adv. Mater. Res. 917, 115–122. DOI: 10.4028/www. scientific.net/AMR.917.115.Search in Google Scholar

52. Chen, Y.H. & Lu, D.L. (2015). CO2 capture by kaolinite and its adsorption mechanizm. Appl. Clay Sci. 104, 221–228. DOI: 10.1016/j.clay.2014.11.036.10.1016/j.clay.2014.11.036Search in Google Scholar

53. Zhou, F., Yan, C., Zhang, Y., Tan, J., Wang, H., Zhou, S. & Pu, S. (2016). Purification and defibering of a Chinese sepiolite. Appl. Clay Sci. 124, 119−126. DOI: 10.1016/j.clay.2016.02.013.10.1016/j.clay.2016.02.013Search in Google Scholar

54. Yuan, M., Gao, G., Hu, X., Luo, X., Huang, Y., Jin, B. & Liang, Z. (2018) Premodified Sepiolite Functionalized with Triethylenetetramine as an Effective and Inexpensive Adsorbent for CO2 Capture. Ind. Eng. Chem. Res. 57, 6189−6200. DOI: 10.1021/acs.iecr.8b00348.10.1021/acs.iecr.8b00348Search in Google Scholar

eISSN:
1899-4741
Język:
Angielski
Częstotliwość wydawania:
4 razy w roku
Dziedziny czasopisma:
Industrial Chemistry, Biotechnology, Chemical Engineering, Process Engineering