Otwarty dostęp

Investigation of the inhibitory-bactericidal effect of amidoamine-based inorganic complexes against microbiological and atmospheric corrosion


Zacytuj

1. Perez, N. (2010). Electrochemistry and corrosion science. Springer, India, Pvt. Ltd, New Dehli.Search in Google Scholar

2. Trabenelli, G. & Mansfeld, F. (1987). Corrosion Mechanisms, Marcel Dekker, New York. p. 109.Search in Google Scholar

3. Bousskri, A., Anejjar, A., Messali, M., Salghi, R., Benali, O., Karzazi, Y.,Jodeh, S., Zougagh, M., Ebenso, Eno, E. & Hammoutiet, B., (2015). Corrosion inhibition of carbon steel in aggressive acidic media with 1-(2-(4-chlorophenyl)-2-oxoethyl)pyridazinium bromide. J. Mol. Liq., 211 (Supplement C):1000–1008. DOI: 10.1016/j.molliq.2015.08.038.10.1016/j.molliq.2015.08.038Search in Google Scholar

4. Sliem, M.H., Afifi, M., Bahgat Radwan, A., Fayyad, E.M., Shibl, M.F., Heakal, F.E., & Abdullah, A.M. (2019). AEO7 Surfactant as an Eco-Friendly Corrosion Inhibitor for Carbon Steel in HCl solution. Scientific reports, 9(1), 2319. DOI: 10.1038/s 41598-018-37254-7.10.1038/s41598-018-37254-7Search in Google Scholar

5. Aghazada, Y.J., Abbasov, V.M., Abdullayev, S.E., Hasanov, E.K. & Yolchuyeva, U.J. (2019). Characterisation of conservative liquids based on liquid rubber, the salts of the natural petroleum acids and nitro compounds-C14H28. // Revue Roumaine de Chimie http://web.icf.ro/rrch/2019, vol. 64(2), pp.125–132. DOI: 10.33224/rrch/2019.64.2.02.10.33224/rrch/2019.64.2.02Search in Google Scholar

6. Aghazada, Y.J., Abbasov, V.M., Abdullayev, S.E., Hasanov, E.K. & Suleymanova, S.S. (2017).The research of anti corrosive properties of various compositions on samples of standard metals. Polish J. Chem. Technol., Vol. 19, No. 4, 2017 pp. 80–86, DOI: 10.1515/pjct-2017-0071.10.1515/pjct-2017-0071Search in Google Scholar

7. Parul Dohare K.R.A., Quraishi M.A. & Obot I.B. (2017). Pyranpyrazole derivatives as novel corrosion inhibitors for mild steel useful for industrial pickling process: Experimental and Quantum Chemical study. J. Ind. Eng. Chem., 52, 197–210. DOI: 10.1016/j.jiec.2017.03.044.10.1016/j.jiec.2017.03.044Search in Google Scholar

8. Kumar, R., et al. (2017). Corrosion inhibition performance of chromone-3-acrylic acid derivatives for low alloy steel with theoretical modeling and experimental aspects. J. Mol. Liq., 243 (Supplement C):439–450. DOI: 10.1016/j.molliq.2017.08.048.10.1016/j.molliq.2017.08.048Search in Google Scholar

9. Esmaeili, N., Neshati, J. & Yavari, I. (2015). Corrosion inhibition of new thiocarbohydrazides on the carbon steel in hydrochloric acid solution. J. Ind. Eng. Chem., 22, 159–163. DOI: 10.1016/j.jiec.2014.07.004.10.1016/j.jiec.2014.07.004Search in Google Scholar

10. Zaafarany, I.A. (2014).Corrosion inhibition of 1018 carbon steel in hydrochloric acid using Schiff base compounds. International J. Corros. Scale Inhibit., 3, 12–27. DOI: 10.17675/2305-6894-2014-3-1-012-027.10.17675/2305-6894-2014-3-1-012-027Search in Google Scholar

11. Bouklah, M., Hammouti, B., Lagrenée, M., Bentiss, F. (2006).Thermodynamic properties of 2,5-bis(4-methoxyphenyl)-1,3,4-oxadiazole as a corrosion inhibitor for mild steel in normal sulfuric acid medium. Corros. Sci., 48(9), 2831–2842. DOI: 10.1016/j.corsci.2005.08.019.10.1016/j.corsci.2005.08.019Search in Google Scholar

12. Hegazy, AYE-EMA, El-Shafaie, M., Berry, K.M. (2016). Novel cationic surfactants for corrosion inhibition of carbon steel pipelines in oil and gas wells applications. J. Mol. Liq., 214, 347–356. DOI: 10.1016/j.molliq.2015.11.047.10.1016/j.molliq.2015.11.047Search in Google Scholar

13. Zhu, MLFY, Cho, J.H. (2016). Integrated evaluation of mixed surfactant distribution in water-oil-steel pipe environments and associated corrosion inhibition efficiency. Corros. Sci., 110, 213–227. DOI: 10.1016/j.corsci.2016.04.043.10.1016/j.corsci.2016.04.043Search in Google Scholar

14. Aiad, I.A., Tawfik, S.M., Shaban, S.M. et al. (2014). Enhancing of Corrosion Inhibition and the Biocidal Effect of Phosphonium Surfactant Compounds for Oil Field Equipment. J. Surfact Deterg 17, 391–401, DOI: 10.1007/s11743-013-1512-y.10.1007/s11743-013-1512-ySearch in Google Scholar

15. Shaban, S.M., Aiad, I., Moustafa, H.Y. & Hamed. A. (2015). Amidoamine Gemini surfactants based dimethylamino propyl amine: Preparation, characterization and evaluation as biocide. J. Mol. Liq. 212, 907–914, DOI: 10.1016/j.molliq.2015.10.048.10.1016/j.molliq.2015.10.048Search in Google Scholar

16. A. G1-90, Standard Practice for Preparing, Cleaning, and Evaluating Corrosion Test Specimens (1999).Search in Google Scholar

17. Aslam, R., Mobin, M., Aslam, J., Lgaz, H. (2018). Sugar based N,N′-didodecyl-N,N′digluconamide-ethylenediamine gemini surfactant as corrosion inhibitor for mild steel in 3.5% NaCl solution-effect of synergistic KI additive. Scientific Reports. 8(1), 3690. DOI: 10.1038/s41598-018-21175-6.10.1038/s41598-018-21175-6582923129487360Search in Google Scholar

18. Aloui, S., Forsal, I., Sfaira, M., Touhami, Ebn. M., Taleb, M., Filali Baba, M. & Daoudi, M. (2009). New mechanism synthesis of 1,4-benzothiazine and its inhibition performance on mild steel in hydrochloric acid. Port. Electrochim. Acta. 27, 599–613. DOI: 10.4152/pea.200905599.10.4152/pea.200905599Search in Google Scholar

19. Keles, H., Keles, M., Dehri, I. & Serindag, O. (2008). The inhibitive effect of 6-amino-m-cresol and its Schiff base on the corrosion of mild steel in 0.5 M HCI medium. Mater. Chem. Phys. 112, 173–179. DOI: 10.1016/j.matchemphys.2008.05.027.10.1016/j.matchemphys.2008.05.027Search in Google Scholar

20. Valcarce, M.B. & Vázquez, M. (2009). Carbon steel passivity examined in solutions with a low degree of carbonation: The effect of chloride and nitrite ions. Mater. Chem. Phys. 115(1), 313–321. DOI: 10.1016/j.matchemphys.2008.12.007.10.1016/j.matchemphys.2008.12.007Search in Google Scholar

21. Bahgat, Radwan A, Sliem M.H., Okonkwo, P.C., Shibl, M.F. & Abdullah, A.M. (2017). Corrosion inhibition of API X120 steel in a highly aggressive medium using stearamidopropyl dimethylamine. J. Mol. Liq. 236 (Supplement C), 220–231. DOI: 10.1016/j.molliq.2017.03.116.10.1016/j.molliq.2017.03.116Search in Google Scholar

22. Shaban, S.M., El-Sherif, R.M. & Fahim, M.A. (2018). Studying the surface behavior of some prepared free hydroxyl cationic amphipathic compounds in aqueous solution and their biological activity. J. Mol. Liq. 252, 40–51. DOI: 10.1016/j. molliq.2017.12.105.10.1016/j.molliq.2017.12.105Search in Google Scholar

23. Zarrok, H., Zarrouk, A., Hammouti, B., Salghi, R., Jama, C. & Bentiss, F. (2012). Corrosion control of carbon steel in phosphoric acid by purpald – Weight loss, electrochemical and XPS studies. Corros. Sci. 64, 243–252. DOI: 10.1016/j. corsci.2012.07.018.10.1016/j.corsci.2012.07.018Search in Google Scholar

24. Zarrouk, A., Ramli, Y., Zarrok, H. & Bouachrine, M. (2016). Inhibitive properties, adsorption and theoretical study of 3,7-dimethyl-1-(prop-2-yn-1-yl)quinoxalin-2(1H)-one as efficient corrosion inhibitor for carbon steel in hydrochloric acid solution. J. Mol. Liq., 222 (Supplement C), 239–252. DOI: 10.1016/j.molliq.2016.07.046.10.1016/j.molliq.2016.07.046Search in Google Scholar

25. Akid, R., Kaczerewska, O., Leiva-Garcia, R. & Brycki, B. (2018). Effectiveness of O-bridged cationic gemini surfactants as corrosion inhibitors for stainless steel in 3 M HCl: Experimental and theoretical studies. J. Mol. Liq. 249, 1113–1124. DOI: 10.1016/j.molliq.2017.11.142.10.1016/j.molliq.2017.11.142Search in Google Scholar

26. Bouammali, H., Jama, C., Bekkouch, K., Aouniti, A., Hammouti, B. & Bentiss, F. (2015). Anticorrosion potential of diethylenetriaminepentakis (methylphosphonic) acid on carbon steel in hydrochloric acid solution. J. Ind. Eng. Chem. 26, 270–276. DOI: 10.1016/j.jiec.2014.11.039.10.1016/j.jiec.2014.11.039Search in Google Scholar

27. Prajila, M. & Joseph, A. (2017). Inhibition of mild steel corrosion in hydrochloric using three different 1,2,4-triazole Schiff’s bases: A comparative study of electrochemical, theoretical and spectroscopic results. J. Mol. Liq., 241 (Supplement C),1–8. DOI: 10.1016/j.molliq.2017.05.136.10.1016/j.molliq.2017.05.136Search in Google Scholar

28. Kumar, R., Chopra, R. & Singh, G. (2017). Electrochemical, morphological and theoretical insights of a new environmentally benign organic inhibitor for mild steel corrosion in acidic media. J. Mol. Liq. 241 (Supplement C), 9–19. DOI: 10.1016/j.molliq.2017.05.130.10.1016/j.molliq.2017.05.130Search in Google Scholar

29. Yadav, M., Sarkar, T.K. & Purkait, T. (2015). Amino acid compounds as eco-friendly corrosion inhibitor for N80 steel in HCl solution: Electrochemical and theoretical approaches. J. Mol. Liq., 212 (Supplement C), 731–738. DOI: 10.1016/j. molliq.2015.10.021.10.1016/j.molliq.2015.10.021Search in Google Scholar

30. Tang, Y., et al. (2013). Novel benzimidazole derivatives as corrosion inhibitors of mild steel in the acidic media. Part I: Gravimetric, electrochemical, SEM and XPS studies. Corros. Sci. 74, 271–282. DOI: 10.1016/j.corsci.2013.04.053.10.1016/j.corsci.2013.04.053Search in Google Scholar

31. Mendonca, G.L.F., Costa, S.N., Freire, V.N., Casciano, P.N.S., Correia, A.N. & de Lima-Neto, P. (2017). Understanding the corrosion inhibition of carbon steel and copper in sulphuric acid medium by amino acids using electrochemical techniques allied to molecular modeling methods. Corros. Sci. 115, 41–55. DOI: 10.1016/j.corsci.2016.11.012.10.1016/j.corsci.2016.11.012Search in Google Scholar

32. Solmaz, R., Kardas, G., Yazici, B. & Erbil, M. (2008). Adsorption and corrosion inhibitive properties of 2-amino--5-mercapto-1,3,4- thiadiazole on mild steel in hydrochloric acid media. Colloids Surf., A 312, 7–17. DOI: 10.1016/j.colsurfa.2007.06.035.10.1016/j.colsurfa.2007.06.035Search in Google Scholar

33. Yadav, M., Sinha, R.R., Sarkar, T.K., Bahadur, I. & Eben-so, E.E. (2015).Application of new isonicotinamides as a corrosion inhibitor on mild steel in acidic medium: Electrochemical, SEM, EDX, AFM and DFT investigations. J. Mol. Liq. 212 (Supplement C), 686–698. DOI: 10.1016/j.molliq.2015.09.047.10.1016/j.molliq.2015.09.047Search in Google Scholar

34. Srivastava, V., et al. (2017). Amino acid based imidazolium zwitterions as novel and green corrosion inhibitors for mild steel: Experimental, DFT and MD studies. J. Mol. Liq. 244 (Supplement C), 340–352. DOI: 10.1016/j.molliq.2017.08.049.10.1016/j.molliq.2017.08.049Search in Google Scholar

35. Stansbury, R.A.B.E.E. (2000). Fundamentals of electro-chemical corrosion. ASM Int, 271–277.10.31399/asm.tb.fec.9781627083027Search in Google Scholar

36. Yadav, M., Gope, L., Kumari, N. & Yadav, P. (2016). Corrosion inhibition performance of pyranopyra- zole derivatives for mild steel in HCl solution: Gravimetric, electrochemical and DFT studies. J. Mol. Liq. 216 (Supplement C), 78–86. DOI: 10.1016/j.molliq.2015.12.106.10.1016/j.molliq.2015.12.106Search in Google Scholar

37. Jokar, T.S.F.M. & Ramezanzadeh, B. (2016). Electro-chemical and surface characterizations of Morus alba Pendula leaves extract (MAPLE) as a green corrosion inhibitor for steel in 1 M HCl. J. Taiwan Inst. Chem. Eng. 63, 436–452. DOI: 10.1016/j.jtice.2016.02.027.10.1016/j.jtice.2016.02.027Search in Google Scholar

38. Kowsari, S.Y.A.E., et al. (2016). In situ synthesis, electrochemical and quantum chemical analysis of an amino acid-derived ionic liquid inhibitor for corrosion protection of mild steel in 1M HCl solution. Corros. Sci., 112,73–85. DOI: 10.1016/j.corsci.2016.07.015.10.1016/j.corsci.2016.07.015Search in Google Scholar

39. Verma, C., Ebenso, E.E. & Vishal, Y.M.A., Quraishi, Dendrimers: A new class of corrosion inhibitors for mild steel in 1M HCl: Experimental and quantum chemical studies. J. Mol. Liq. 224 (Part B), 1282–1293. DOI: 10.1016/j.molliq.2016.10.117.10.1016/j.molliq.2016.10.117Search in Google Scholar

40. Eghbali, F., Moayed, M.H., Davoodi, A. & Ebrahimi, N., (2011). Critical pitting temperature (CPT) assessment of 2205 duplex stainless steel in 0.1 M NaCl at various molybdate concentrations Corros. Sci. 53, 513. DOI: 10.1016/j. corsci.2010.08.008.10.1016/j.corsci.2010.08.008Search in Google Scholar

41. Hachelef, H., Benmoussat, A., Khelifa, A. & Meziane, M. (2016). Study of the propolis extract as a corrosion inhibitor of copper alloy in ethylene glycol / water 0.1 m NaCl. J. Fundam. Appl. Sci., 9(2), 650–668. DOI: D10.4314/jfas.v9i2.3.10.4314/jfas.v9i2.3Search in Google Scholar

42. Solmaz, R. (2014).“Investigation of adsorption and corrosion inhibition of mild steel in hydrochloric acid solution by 5-(4-dimethylaminobenzylidene) rhodanine,” Corrosion Science, 79, pp. 169–176. DOI: 10.1016/j.corsci.2013.11.001.10.1016/j.corsci.2013.11.001Search in Google Scholar

43. Ghazoui, A., Benchat, N., El-Hajjaji, F., Taleb, M., Rais, Z., Saddik, R., Elaatiaouim A. & Hammouti, B. (2017). The study of the effect of ethyl (6-methyl- 3-oxopyridazin-2-yl) acetate on mild steel corrosion in 1 M HCl. J. Alloys Compd. 693, 510–517. DOI: 10.1016/j.jallcom.2016. 09.191.10.1016/j.jallcom.2016.09.191Search in Google Scholar

44. Abd El-Lateef, H.M., Abu-Dief, A.M., Abdel-Rahman, L.H., Sanudo, E.C. & Aliaga-Alcalde, N. (2015). Electrochemical and theoretical quantum approaches on the inhibition of C1018 carbon steel corrosion in acidic medium containing chloride using some newly synthesized phenolic Schiff bases compounds. J. Electroanal. Chem. 743, 120–133. DOI: 10.1016/j. jelechem. 2015.02.023.10.1016/j.jelechem.2015.02.023Search in Google Scholar

45. Lorenz, W.J. & Heusler, K.E. (1987).“Anodic Dissolution of Iron Group Metals,” in Corrosion Mechanisms, F. Mansfeld, Ed., pp. 1–83, Marcel Dekker, New York, NY, USA.Search in Google Scholar

46. Laidler, K.J, Reaction Kinetics, (1963). Vol. 1, 1st ed., Pergamon Press, New York.10.1016/B978-1-4831-9738-8.50005-4Search in Google Scholar

47. Shaban, S.M., Fouda, A.S., Elmorsi, M.A., Fayed, T. & Azazy, O. Adsorption and micellization behavior of synthesized amidoamine cationic surfactants and their biological activity. J. Mol. Liq. 216, 284–292. DOI: 10.1016/j.molliq.2015.12.111.10.1016/j.molliq.2015.12.111Search in Google Scholar

48. Muralisankar, M., Sreedharan, R., Sujith, S., Bhuvanesh, N.S.P. & Sreekanth, A. (2017). N(1)-pentyl isatin-N(4)-methyl-N(4)-phenyl thiosemicarbazone (PITSc) as a corrosion inhibitor on mild steel in HCl. J. Alloys Compd. 695, 171–182. DOI: 10.1016/j.jallcom.2016.10.173.10.1016/j.jallcom.2016.10.173Search in Google Scholar

49. Salarvand, Z., Amirnasr, M., Talebian, M., Raeissi, K. & Meghdadi, S. (2017). Enhanced corrosion resistance of mild steel in 1 M HCl solution by trace amount of 2-phenylbenzothiazole derivatives: experimental, quantum chemical calculations and molecular dynamics (MD) simulation studies. Corros. Sci. 114, 133–145. DOI: 10.1016/j.corsci.2016.11.002.10.1016/j.corsci.2016.11.002Search in Google Scholar

50. Fouda, A.S., Elmorsi, M.A. & Abou-Elmagd, B.S. (2017). Adsorption and inhibitive properties of methanol extract of Eeuphorbia Heterophylla for the corrosion of copper in 0.5 M nitric acid solutions. Polish J. Chem. Technol., vol. 19, No. 1, pp. 95–103 DOI: 10.1515/pjct-2017-0014.10.1515/pjct-2017-0014Search in Google Scholar

eISSN:
1899-4741
Język:
Angielski
Częstotliwość wydawania:
4 razy w roku
Dziedziny czasopisma:
Industrial Chemistry, Biotechnology, Chemical Engineering, Process Engineering