Otwarty dostęp

Thermodynamics and kinetics of thermal deactivation of catalase Aspergillus niger


Zacytuj

1. Raducan, A., Cantemir, A.R., Puiu, M. & Oancea, D. (2012). Kinetics of hydrogen peroxide decomposition by catalase: hydroxylic solvent effects. Bioprocess Biosyst. Eng. 35(9), 1523−1530. DOI: 10.1007/s00449-012-0742-0.10.1007/s00449-012-0742-022565543Search in Google Scholar

2. Kaddour, S., López-Gallego, F., Sadoun, T., Fernandez-Lafuente, R. & Guisan, J.M., (2008). Preparation of an immobilized − stabilized catalase derivative from Aspergillus niger having its multimeric structure stabilized: The effect of Zn2+ on enzyme stability. J. Mol. Catal. B: Enzym. 55, 142−145. DOI: 10.1016/j.molcatb.2008.03.006.10.1016/j.molcatb.2008.03.006Search in Google Scholar

3. Akertek, E. & Tarhan, L. (1995). Characterization of immobilized catalases and their application in pasteurization of milk with H2O2. Appl. Biochem. Biotechnol. 50(3), 291–303. DOI: 10.1007/BF02788099.10.1007/BF02788099Search in Google Scholar

4. Madhu, A. & Chakraborty, J.N. (2017). Developments in application of enzymes for textile processing. J. Clean. Prod. 145, 114–133. DOI: 10.1016/j.jclepro.2017.01.013.10.1016/j.jclepro.2017.01.013Search in Google Scholar

5. Giorgiana, G.A. (2017). Catalase immobilization - A review. Biochem. Eng. J. 117, 1–20. DOI: 10.1016/j.bej.2016.10.021.10.1016/j.bej.2016.10.021Search in Google Scholar

6. Pudlarz, A.M., Czechowska, E., Ranoszek-Soliwoda, K., Tomaszewska, E., Celichowski, G., Grobelny, J. & Szemraj, J. (2018). Immobilization of recombinant human catalase on gold and silver nanoparticles. Appl. Biochem. Biotechnol. 185(3), 717–735. DOI: 10.1007/s12010-017-2682-2.10.1007/s12010-017-2682-229299755Search in Google Scholar

7. Röcker, J., Schmitt. M., Pasch, L., Ebert, K. & Grossmann, M. (2016). The use of glucose oxidase and catalase for the enzymatic reduction of the potential ethanol content in wine. Food Chem. 210, 660–670. DOI: 10.1016/j.foodchem.2016.04.093.10.1016/j.foodchem.2016.04.09327211694Search in Google Scholar

8. Miłek, J. (2018). Estimation of the kinetic parameters for H2O2 enzymatic decomposition and for catalase deactivation. Braz. J. Chem. Eng. 35(3), 995–1004. DOI: 10.1590/0104-6632.20180353s20160617.10.1590/0104-6632.20180353s20160617Search in Google Scholar

9. Miłek, J. & Wójcik, M. (2011). Effect of temperature on the decomposition of hydrogen peroxide by catalase Terminox Ultra. Przem. Chem. 90(6), 1260–1263. http://sigma-not.pl/publikacja-60227-wplyw-temperatury-na-rozklad-nadtlenku-wodoru-przezkatalaze-terminox-ultra-przemysl-chemiczny-2011-6.html.Search in Google Scholar

10. Miłek, J., Wójcik, M. & Verschelde, W. (2014). Thermal stability for the effective use of commercial catalase. Pol. J. Chem. Tech. 16(4), 75–79. DOI: 10.2478/pjct-2014-0073.10.2478/pjct-2014-0073Search in Google Scholar

11. Jürgen-Lohmann, D.L. & Legge, R.L. (2006). Immobilization of bovine catalase in sol–gels, Enz. Microb. Technol. 39, 626–633. DOI: 10.1016/j.enzmictec.2005.11.015.10.1016/j.enzmictec.2005.11.015Search in Google Scholar

12. Elsebai, B., Ghica, M.E., Abbas, M.N. & Brett, C.M.A. (2017). Catalase based hydrogen peroxide biosensor for mercury determination by inhibition measurements, J. Hazard. Mater. 340, 344–350. DOI: 10.1016/j.jhazmat.2017.07.021.10.1016/j.jhazmat.2017.07.02128728113Search in Google Scholar

13. Xu, Q., Cai, L., Zhao, H., Tang, J., Shen, Y., Hu, X. & Zeng, H. (2015). Forchlorfenuron detection based on its inhibitory effect towards catalase immobilized on boron nitride substrate. Biosens. Bioelectron. 63, 294–300. DOI: 10.1016/j. bios.2014.07.055.Search in Google Scholar

14. Cantemir, A.R., Raducan, A., Puiu, M. & Oancea, D. (2013). Kinetics of thermal inactivation of catalase in the presence of additives. Proc. Biochem. 48, 471−477. DOI: 10.1016/j. procbio.2013.02.013.Search in Google Scholar

15. Díaz, A., Muñoz-Clares, R.A., Rangel, P., Valdés, V.J. & Hansberg, W. (2005). Functional and structural analysis of catalase oxidized by singlet oxygen. Biochimie. 87, 205–214. DOI: 10.1016/j.biochi.2004.10.014.10.1016/j.biochi.2004.10.01415760714Search in Google Scholar

16. De Borba, T.M., Machado, T.B., Brandelli, A., Kalil, S.J. (2018). Thermal stability and catalytic properties of protease from Bacillus sp. P45 active in organic solvents and ionic liquid. Biotechnol. Prog. 34, 1102–1108. DOI: 10.1002/btpr.2672.10.1002/btpr.267229987906Search in Google Scholar

17. Anthon, G.E. & Barrett, D.M. (2002). Kinetic parameters for the thermal inactivation of quality-related enzymes in carrots and potatoes. J. Agric. Food Chem. 50, 4119–4125. DOI: 10.1021/jf011698i.10.1021/jf011698i12083894Search in Google Scholar

18. Schwab, M. & Pinto, J.C. (2007). Optimum reference temperature for reparameterization of the Arrhenius equation. Part 1: Problems involving one kinetic constant, Chem. Eng. Sci. 62, 2750–2764. DOI: 10.1016/j.ces.2007.02.020.10.1016/j.ces.2007.02.020Search in Google Scholar

19. Freitas, F.F., Marquez, L.D.S., Ribeiro, G.P., Brandão, G.C., Cardoso, V.L., & Ribeiro, E.J. (2012). Optimization of the immobilization process of β-galatosidade by combined entrapment-cross-linking and the kinetics of lactose hydrolysis. Brazilian J. Chem. Eng. 29(01), 15–24. DOI: 10.1590/S0104-66322012000100002.10.1590/S0104-66322012000100002Search in Google Scholar

20. Kikani, B.A. & S ingh, S .P. (2012). The stability and thermodynamic parameters of a very thermostable and calcium-independent α-amylase from a newly isolated bacterium, Anoxy-bacillus beppuensis TSSC-1. Proc. Biochem. 47(12), 1791–1798. DOI: 10.1016/j.procbio.2012.06.005.10.1016/j.procbio.2012.06.005Search in Google Scholar

21. Hooda, P.V. (2014). Immobilization and kinetics of catalase on calcium carbonate nanoparticles attached epoxy support, Appl. Biochem. Biotechnol. 172, 115–130. DOI: 10.1007/s12010-013-0498-2.10.1007/s12010-013-0498-224048961Search in Google Scholar

22. Gudelj, M., Fruhwirth, G.O., Paar, A., Lottspeich, F., Robra, K.H., Cavaco-Paulo, A. & Gübitz, G.M. (2001). A catalaseperoxidase from a newly isolated thermoalkaliphilic Bacillus sp. with potential for the treatment of textile bleaching effluents. Extremophiles 5, 423–429. DOI: 10.1007/s007920100218.10.1007/s00792010021811778844Search in Google Scholar

23. Lorentzen, M.S., Moe, E.H., Jouve, M., Willassen, N.P. (2006). Cold adapted features of Vibrio salmonicida catalase: characterisation and comparison to the mesophilic counterpart from Proteus mirabilis. Extremophiles 10, 427-440. DOI: 10.1007/s00792-006-0518-z.10.1007/s00792-006-0518-z16609813Search in Google Scholar

24. Moosavi-Movahedi, M.A. (1994). Interaction of Aspergillus niger catalase with sodium N-dodecyl sulphate. Pure Appl. Chem. 66, 71–75. DOI: 10.1016/1357-2725(96)00044-1.10.1016/1357-2725(96)00044-1Search in Google Scholar

25. Prieto, G., Suárez, M.J., González-Pérez, A., Ruso, J.M. & Sarmiento, F. (2004). A spectroscopic study of the interaction catalase–cationic surfaktant (n-decyltrimethylammonium bromide) in aqueous solutions at different pH and temperatures, Phys. Chem. Chem. Phys. 6, 816–821. DOI: 10.1039/B308466C.10.1039/B308466CSearch in Google Scholar

26. Gouzi, H., Depagne, C., Coradin. T. (2011). Kinetics and thermodynamics of the thermal inactivation of polyphenol oxidase in an aqueous extract from Agaricus bisporus. J. Agric. Food Chem. 60(1), 500–506. DOI: 10.1021/jf204104g.10.1021/jf204104gSearch in Google Scholar

27. Çetinus, Ş.A. & Öztop, H.N. (2000). Immobilization of catalase on chitosan film. Enz. Microb. Technol. 26, 497–501. DOI: 10.1016/S0141-0229(99)00189-1.10.1016/S0141-0229(99)00189-1Search in Google Scholar

28. Tukel, S.S. & Alptekin, O. (2004). Immobilization and kinetics of catalase onto magnesium silicate. Proc Biochem. 39, 2149–2155. DOI: 10.1016/j.procbio.2003.11.010.10.1016/j.procbio.2003.11.010Search in Google Scholar

29. Vatsyayan, P. & Goswami, P. (2016). Highly active and stable large catalase isolated from a hydrocarbon degrading Aspergillus terreus MTCC 6324. Enzyme Res. 4379403. DOI: 10.1155/2016/4379403.10.1155/2016/4379403480706527057351Search in Google Scholar

30. Vasić-Rački, D., Findrik, Z. & Presečki, A.V. (2011). Modelling as a tool of enzyme reaction engineering for enzyme reactor development. Appl. Microbiol. Biotechnol. 91, 845–856. DOI: 10.1007/s00253-011-3414-0.10.1007/s00253-011-3414-021691784Search in Google Scholar

eISSN:
1899-4741
Język:
Angielski
Częstotliwość wydawania:
4 razy w roku
Dziedziny czasopisma:
Industrial Chemistry, Biotechnology, Chemical Engineering, Process Engineering