Otwarty dostęp

SCMNPs@Uridine/Zn: An efficient and reusable heterogeneous nanocatalyst for the rapid one-pot synthesis of tricyclic fused pyrazolopyranopyrimidine and 3-methyl carboxylate substituted pyrano[2,3-c]pyrazole derivatives under solvent-free conditions


Zacytuj

1. Hu, L., Yang, X. & Dang, S. (2011). An easily recyclable Co/SBA-15 catalyst: heterogeneous activation of peroxymonosulfate for the degradation of phenol in water. Appl. Catal. B: Environ. 102(1–2), 19–26. DOI:10.1016/j.apcatb.2010.11.019.10.1016/j.apcatb.2010.11.019Search in Google Scholar

2. Yamaguchi, K. & Mizuno, N. (2002). Supported ruthenium catalyst for the heterogeneous oxidation of alcohols with molecular oxygen. Angew. Chemie Internat. Edit. 41(23), 4538–4542. DOI:10.1002/1521-3773(20021202)41:23<4538::AIDANIE4538>3.0.CO;2-6.10.1002/1521-3773(20021202)41:23<4538::AID-ANIE4538>3.0.CO;2-6Search in Google Scholar

3. Mori, K., Hara, T., Mizugaki, T., Ebitani, K. & Kaneda, K. (2004). Hydroxyapatite-supported palladium nanoclusters: a highly active heterogeneous catalyst for selective oxidation of alcohols by use of molecular oxygen. J. Amer. Chem. Soc. 126(34), 10657–10666. DOI:10.1021/ja0488683.10.1021/ja048868315327324Search in Google Scholar

4. Mahmoudi, M., Sant, S., Wang, B., Laurent, S. & Sen, T. (2011). Superparamagnetic iron oxide nanoparticles (SPIONs): development, surface modification and applications in chemo-therapy. Adv. Drug Delivery Rev. 63(1–2), 24–46. DOI:10.1016/j. addr.2010.05.006.10.1016/j.addr.2010.05.006Search in Google Scholar

5. Lou, L., Yu, K., Zhang, Z., Huang, R., Wang, Y. & Zhu, Z. (2012). Facile methods for synthesis of core–shell structured and heterostructured Fe3O4@ Au nanocomposites. Appl. Surf. Sci. 258(22), 8521–8526. DOI:10.1016/j.apsusc.2012.05.031.10.1016/j.apsusc.2012.05.031Search in Google Scholar

6. Baig, R.N. & Varma, R.S. (2013). Magnetically retrievable catalysts for organic synthesis. Chem. Commun. 49(8), 752–770. DOI:10.1039/C2CC35663E.10.1039/C2CC35663E23212208Search in Google Scholar

7. Rajabi, F., Karimi, N., Saidi, M.R., Primo, A., Varma, R.S. & Luque, R. (2012). Unprecedented selective oxidation of styrene derivatives using a supported iron oxide nanocatalyst in aqueous medium. Adv. Synt. & Catal. 354(9), 1707–1711. DOI:10.1002/adsc.201100630.10.1002/adsc.201100630Search in Google Scholar

8. Kotarba, A., Bieniasz, W., Kuśtrowski, P., Stadnicka, K. & Sojka, Z. (2011). Composite ferrite catalyst for ethylbenzene dehydrogenation: Enhancement of potassium stability and catalytic performance by phase selective doping. Appl. Catal. A: General, 407(1–2), 100–105. DOI:10.1016/j.apcata.2011.08.029.10.1016/j.apcata.2011.08.029Search in Google Scholar

9. Kantam, M.L., Yadav, J., Laha, S., Srinivas, P., Sreedhar, B. & Figueras, F. (2009). Asymmetric hydrosilylation of ketones catalyzed by magnetically recoverable and reusable copper ferrite nanoparticles. J. Org. Chem. 74(12), 4608–4611. DOI:10.1021/jo9002823.10.1021/jo900282319518151Search in Google Scholar

10. Saha, A., Leazer, J. & Varma, R.S. (2012). O-Allylation of phenols with allylic acetates in aqueous media using a magnetically separable catalytic system. Green Chem. 14(1), 67–71. DOI:10.1039/C1GC16174A.10.1039/C1GC16174ASearch in Google Scholar

11. Ismail, Z.H., Aly, G.M., El-Degwi, M.S., Heiba, H.I. & Ghorab, M.M. (2003). Synthesis and insecticidal activity of some new pyranopyrazoles, pyrazolopyranopyrimidines, and pyrazolopyranopyridines. Egypt. J. Biotechnol. 13, 73–82. DOI:10.1080/00397911.2015.1129668.10.1080/00397911.2015.1129668Search in Google Scholar

12. Nasr, M.N. & Gineinah, M.M. (2002). Pyrido [2, 3-d] pyrimidines and Pyrimido [5′, 4′: 5, 6] pyrido [2, 3-d] pyrimidines as New Antiviral Agents: Synthesis and Biological Activity. Archiv der Pharmazie: An Internat. J. Pharmac. Med. Chem. 335(6), 289–295. DOI:10.1002/1521-4184(200208)335:6<289::AIDARDP289>3.0.CO;2-Z.10.1002/1521-4184(200208)335:6<289::AID-ARDP289>3.0.CO;2-ZSearch in Google Scholar

13. Abdelrazek, F.M., Metz, P., Metwally, N.H. & El-Mahrouky, S.F. (2006). Synthesis and Molluscicidal Activity of New Cinnoline and Pyrano [2, 3-c] pyrazole Derivatives. Archiv der Pharmazie: An Internat. J. Pharmac. Med. Chem. 339(8), 456–460. DOI:10.1002/ardp.200600057.10.1002/ardp.20060005716795107Search in Google Scholar

14. Abdelrazek, F.M., Metz, P., Kataeva, O., Jaeger, A., & El-Mahrouky, S.F. (2007). Synthesis and molluscicidal activity of new chromene and pyrano [2, 3-c] pyrazole derivatives. Archiv der Pharmazie: An Internat. J. Pharmac. Med. Chem. 340(10), 543–548. DOI:10.1002/ardp.200700157.10.1002/ardp.20070015717912679Search in Google Scholar

15. Feurer, A., Luithle, J., Wirtz, S., Koenig, G., Stasch, J., Stahl, E. & Lang, D. (2004). PCT Int. Appl. WO 2004009589 (Bayer Healthcare AG, Germany). Chem. Abstr. Vol. 140, p. 146157.Search in Google Scholar

16. Kuo, S.C., Huang, L.J. & Nakamura, H. (1984). Studies on heterocyclic compounds. 6. Synthesis and analgesic and antiinflammatory activities of 3, 4-dimethylpyrano [2, 3-c] pyrazol-6-one derivatives. J. Med. Chem. 27(4), 539–544. DOI:10.1021/jm00370a020.10.1021/jm00370a0206708056Search in Google Scholar

17. Zaki, M.E., Soliman, H.A., Hiekal, O.A. & Rashad, A.E. (2006). Zeitschrift fur Naturforschung. C. J. Biosci. 61, 1.10.1515/znc-2006-1-201Search in Google Scholar

18. Wang, J.L., Liu, D., Zhang, Z.J., Shan, S., Han, X., Srinivasula, S.M. & Huang, Z. (2000). Structure-based discovery of an organic compound that binds Bcl-2 protein and induces apoptosis of tumor cells. Proceed. National Acad. Sci. 97(13), 7124–7129. DOI:10.1073/pnas.97.13.7124.10.1073/pnas.97.13.71241651010860979Search in Google Scholar

19. Junek, H. & Aigner, H. (1973). Synthesen mit Nitrilen, XXXV. Reaktionen von tetracyanäthylen mit heterocyclen. Chem. Berichte, 106(3), 914–921. DOI:10.1002/cber.19731060323.10.1002/cber.19731060323Search in Google Scholar

20. Vasuki, G. & Kumaravel, K. (2008). Rapid four-component reactions in water: synthesis of pyranopyrazoles. Tetrahedron Letters, 49(39), 5636–5638. DOI:10.1016/j.tetlet.2008.07.055.10.1016/j.tetlet.2008.07.055Search in Google Scholar

21. Gogoi, S. & Zhao, C.G. (2009). Organocatalyzed enantioselective synthesis of 6-amino-5-cyanodihydropyrano [2, 3-c] pyrazoles. Tetrahedron Letters, 50(19), 2252–2255. DOI:10.1016/j. tetlet.2009.02.210.10.1016/j.tetlet.2009.02.210Search in Google Scholar

22. Mecadon, H., Rohman, M.R., Kharbangar, I., Laloo, B.M., Kharkongor, I., Rajbangshi, M. & Myrboh, B. (2011). L-Proline as an efficicent catalyst for the multi-component synthesis of 6-amino-4-alkyl/aryl-3-methyl-2, 4-dihydropyrano [2, 3-c] pyrazole-5-carbonitriles in water. Tetrahedron Letters, 52(25), 3228–3231. DOI:10.1016/j.tetlet.2011.04.048.10.1016/j.tetlet.2011.04.048Search in Google Scholar

23. Mecadon, H., Rohman, M.R., Rajbangshi, M. & Myrboh, B. (2011). γ-Alumina as a recyclable catalyst for the four-component synthesis of 6-amino-4-alkyl/aryl-3-methyl-2, 4-dihydropyrano [2, 3-c] pyrazole-5-carbonitriles in aqueous medium. Tetrahedron Letters, 52(19), 2523–2525. DOI:10.1016/j. tetlet.2011.03.036.10.1016/j.tetlet.2011.03.036Search in Google Scholar

24. Reddy, M.M., Jayashankara, V.P. & Pasha, M.A. (2010). Glycine-catalyzed efficient synthesis of pyranopyrazoles via one-pot multicomponent reaction. Synthetic Communications®, 40(19), 2930–2934. DOI:10.1080/00397910903340686.10.1080/00397910903340686Search in Google Scholar

25. Siddekha, A., Nizam, A. & Pasha, M.A. (2011). An efficient and simple approach for the synthesis of pyranopyrazoles using imidazole (catalytic) in aqueous medium, and the vibrational spectroscopic studies on 6-amino-4-(4′-methoxyphenyl)-5-cyano-3-methyl-1-phenyl-1, 4-dihydropyrano [2, 3-c] pyrazole using density functional theory. Spectrochim. Acta Part A: Molec. Biomol. Spectrosc. 81(1), 431–440. DOI:10.1016/j. saa.2011.06.033.10.1016/j.saa.2011.06.033Search in Google Scholar

26. Mohamed, N.R., Khaireldin, N.Y., Fahmyb, A.F. & El-Sayeda, A.A.F. (2010). Facile synthesis of fused nitrogen containing heterocycles as anticancer agents. Der. Pharm. Chem. 2, 400–417.Search in Google Scholar

27. Prasad, Y.R., Rao, A.L., Prasoona, L., Murali, K. & Kumar, P.R. (2005). Synthesis and antidepressant activity of some 1, 3, 5-triphenyl-2-pyrazolines and 3-(2 ″-hydroxy naphthalen-1 ″-yl)-1, 5-diphenyl-2-pyrazolines. Bioorg. & Med. Chem. Letters, 15(22), 5030–5034. DOI:10.1016/j.bmcl.2005.08.040.10.1016/j.bmcl.2005.08.04016168645Search in Google Scholar

28. Ahluwalia, V.K., Dahiya, A. & Garg, V.K. (1997). Reaction of 5-Amino-4-formyl-3-methyl (or phenyl)-1-phenyl-1H-pyrazoles with Active Methylene Compounds: Synthesis of Fused Heterocyclic Rings. ChemInform, 28(40), no-no.10.1002/chin.199740182Search in Google Scholar

29. Furuya, S. & Ohtaki, T. (1994). Pyrido [2, 3-d] pyrimidines and their uses as anatagonists. Eur. Pat. Appl. Ep. 608565.Search in Google Scholar

30. Valderrama, J.A. (2008). Synletters (2006) 2777e2780;(b) JA Valderrama, P. Colonelli, D. Vásquez, MF González, JA Rodríguez, C. Theoduloz. Bioorg. Med. Chem. 16, 10172–10181. DOI:10.1016/j.bmc.2008.10.064.10.1016/j.bmc.2008.10.06419013074Search in Google Scholar

31. Bagley, M.C., Hughes, D.D., Lubinu, M.C., Merritt, E.A., Taylor, P.H. & Tomkinson, N.C. (2004). Microwave-assisted synthesis of pyrimidine libraries. QSAR & Combinat. Sci. 23(10), 859–867. DOI:10.1002/qsar.200420044.10.1002/qsar.200420044Search in Google Scholar

32. Kamdar, N.R., Haveliwala, D.D., Mistry, P.T., & Patel, S.K. (2010). Design, synthesis and in vitro evaluation of antitubercular and antimicrobial activity of some novel pyranopyrimidines. Europ. J. Med. Chem. 45(11), 5056–5063. DOI:10.1016/j.ejmech.2010.08.014.10.1016/j.ejmech.2010.08.01420805011Search in Google Scholar

33. Heravi, M.M., Mousavizadeh, F., Ghobadi, N., & Tajbakhsh, M. (2014). A green and convenient protocol for the synthesis of novel pyrazolopyranopyrimidines via a one-pot, four-component reaction in water. Tetrahedron Letters, 55(6), 1226–1228. DOI:10.1016/j.tetlet.2014.01.004.10.1016/j.tetlet.2014.01.004Search in Google Scholar

34. Khodabakhshi, S., Rashidi, A., Tavakoli, Z., Baghernejad, M., & Yadegari, A. (2016). The first catalytic application of oxidized carbon nanotubes in a four-component synthesis of fused heterocycles. Monatshefte für Chemie-Chemical Monthly, 147(4), 791–795. DOI:10.1007/s00706-015-1532-6.10.1007/s00706-015-1532-6Search in Google Scholar

35. Dastkhoon, S., Tavakoli, Z., Khodabakhshi, S., Baghernejad, M. & Abbasabadi, M.K. (2015). Nanocatalytic onepot, four-component synthesis of some new triheterocyclic compounds consisting of pyrazole, pyran, and pyrimidinone rings. J. Chem. 39(9), 7268–7271. DOI:10.1039/C5NJ01046B.10.1039/C5NJ01046BSearch in Google Scholar

36. Wang, S., Izquierdo, J., Rodríguez-Escrich, C. & Pericà s, M.A. (2017). Asymmetric [4+ 2] Annulation Reactions Catalyzed by a Robust, Immobilized Isothiourea. ACS Catal. 7(4), 2780–2785. DOI:10.1021/acscatal.7b00360.10.1021/acscatal.7b00360Search in Google Scholar

37. Ganesan, A., Kothandapani, J. & Subramaniapillai, S.G. (2016). Extending the scope of oleic acid catalysis in diversity-oriented synthesis of chromene and pyrimidine based scaffolds. RSC Adv. 6(25), 20582–20587. DOI:10.1039/C6RA02507B.10.1039/C6RA02507BSearch in Google Scholar

38. Li, X.T., Zhao, A.D., Mo, L.P. & Zhang, Z.H. (2014). Meglumine catalyzed expeditious four-component domino protocol for synthesis of pyrazolopyranopyrimidines in aqueous medium. RSC Adv. 4(93), 51580–51588. DOI:10.1039/C4RA08689A.10.1039/C4RA08689ASearch in Google Scholar

39. Safaei-Ghomia, J., Asgari-Kheirabadia, M., Shahbazi-Alavia, H. & Ziaratib, A. (2016). Synthesis of methyl 6-amino-5-cyano-4-aryl-2, 4-dihydropyrano [2, 3-c] pyrazole-3-carboxylates using nano-ZnZr4 (PO4) 6 as an efficient catalyst. Iranian J. Catal. 6(4), 319–324.Search in Google Scholar

40. Safaei-Ghomi, J., Asgari-Kheirabadi, M., & Shahbazi-Alavi, H. (2016). Environmentally benign synthesis of methyl 6-amino-5-cyano-4-aryl-2, 4-dihydropyrano [2, 3-c] pyrazole-3-carboxylates using CeO2 nanoparticles as a reusable and robust catalyst. Zeitschrift für Naturforschung B, 71(11), 1135–1140. DOI:10.1515/znb-2016-0119.10.1515/znb-2016-0119Search in Google Scholar

41. Zonouz, A.M., Eskandari, I., & Khavasi, H.R. (2012). A green and convenient approach for the synthesis of methyl 6-amino-5-cyano-4-aryl-2, 4-dihydropyrano [2, 3-c] pyrazole-3-carboxylates via a one-pot, multi-component reaction in water. Tetrahedron Letters, 53(41), 5519–5522. DOI:10.1016/j. tetlet.2012.08.010.10.1016/j.tetlet.2012.08.010Search in Google Scholar

42. Azzam, S.H.S. & Pasha, M.A. (2012). Simple and efficient protocol for the synthesis of novel dihydro-1H-pyrano [2, 3-c] pyrazol-6-ones via a one-pot four-component reaction. Tetrahedron Letters, 53(50), 6834–6837. DOI:10.1016/j. tetlet.2012.10.025.10.1016/j.tetlet.2012.10.025Search in Google Scholar

43. Bihani, M., Bora, P.P., Bez, G., & Askari, H. (2013). Amberlyst A21 catalyzed chromatography-free method for multicomponent synthesis of dihydropyrano [2, 3-c] pyrazoles in ethanol. ACS Sustain. Chem. & Engin. 1(4), 440–447. DOI:10.1021/sc300173z.10.1021/sc300173zSearch in Google Scholar

44. Ambethkar, S., Padmini, V. & Bhuvanesh, N. (2015). A green and efficient protocol for the synthesis of dihydropyrano [2, 3-c] pyrazole derivatives via a one-pot, four component reaction by grinding method. J. Adv. Res. 6(6), 975–985. DOI:10.1016/j.jare.2014.11.011.10.1016/j.jare.2014.11.011464216126644936Search in Google Scholar

45. Bhaskaruni, S.V., Maddila, S., van Zyl, W.E., & Jonnalagadda, S.B. (2018). An efficient and green approach for the synthesis of 2, 4-dihydropyrano [2, 3-c] pyrazole-3-carboxylates using Bi 2 O 3/ZrO 2 as a reusable catalyst. RSC Adv. 8(29), 16336–16343. DOI:10.1039/C8RA01994K.10.1039/C8RA01994KSearch in Google Scholar

46. Rigi, F. & Shaterian, H.R. (2016). Magnetic Nanoparticle Supported Ionic Liquid Assisted Green Synthesis of Pyrazolopyranopyrimidines and 1, 6-diamino-2-oxo-1, 2, 3, 4-tetrahydropyridine-3, 5-dicarbonitriles. J. Chin. Chem. Soc. 63(7), 557–561. DOI:10.1002/jccs.201500407.10.1002/jccs.201500407Search in Google Scholar

47. Zolfigol, M.A., Tavasoli, M., Moosavi-Zare, A.R., Moosavi, P., Kruger, H.G., Shiri, M. & Khakyzadeh, V. (2013). Synthesis of pyranopyrazoles using isonicotinic acid as a dual and biological organocatalyst. RSC Adv. 3(48), 25681–25685. DOI:10.1039/C3RA45289A.10.1039/c3ra45289aSearch in Google Scholar

eISSN:
1899-4741
Język:
Angielski
Częstotliwość wydawania:
4 razy w roku
Dziedziny czasopisma:
Industrial Chemistry, Biotechnology, Chemical Engineering, Process Engineering