Otwarty dostęp

Synthesis of an optical catalyst for cracking contaminating dyes in the wastewater of factories using indium oxide in nanometer and usage in agriculture


Zacytuj

1. Cisneros, R.L., Espinoza, A.G. & Litter, M.I. (2002). Photodegradation of an azo dye of the textile industry. Chemosphere, 48(4), 393–399. https://doi.org/10.1016/S0045-6535(02)00117-0.10.1016/S0045-6535(02)00117-0Open DOISearch in Google Scholar

2. Lee, Y.H. & Pavlostathis, S.G. (2004). Decolorization and toxicity of reactive anthraquinone textile dyes under methanogenic conditions. Water Res., 38(7), 1838–1852. https://doi.org/10.1016/j.watres.2003.12.028.10.1016/j.watres.2003.12.028Open DOISearch in Google Scholar

3. Xie, S., Ren, W., Qiao, C., Tong, K., Sun, J., Zhang, M., Liu, X. & Zhang, Z. (2018). An ele ctrochemi cal adsorp tion metho d for the reuse of w aste wate r-based drilling fluids. Natural Gas Industry B, 5(5), 508–512. https://doi.org/10.1016/j.ngib.2018.03.005.10.1016/j.ngib.2018.03.005Open DOISearch in Google Scholar

4. Zhao, Z., Geng, C., Yang, C., Cui, F. & Liang, Z. (2018). A novel flake-ball-like magnetic Fe3O4/γ-MnO2 meso-porous nano-composite: Adsorption of fluorinion and effect of water chemistry. Chemosphere, 209, 173–181. https://doi.org/10.1016/j.chemosphere.2018.06.104.10.1016/j.chemosphere.2018.06.104Open DOISearch in Google Scholar

5. Radhakrishnan, A., Rejani, P., Khan, J.S. & Beena, B. (2016). Effect of annealing on the spectral and optical characteristics of nano ZnO: Evaluation of adsorption of toxic metal ions from industrial waste water. Ecotoxicology and Environmental Safety, 133, 457–465. https://doi.org/10.1016/j.ecoenv.2016.08.001.10.1016/j.ecoenv.2016.08.001Open DOISearch in Google Scholar

6. Basheer, Al Arsh. (2018). New generation nano-adsorbents for the removal of emerging contaminants in water. J. Molec. Liquids, 261, 583–593.10.1016/j.molliq.2018.04.021Search in Google Scholar

7. Mehrotra, R.C. & Bohra, R. (1983). Metal Carboxylates, Academic Press, London.Search in Google Scholar

8. Brusau, E.V., Pedregosa, J.C., Narda, G.E., Ayala, E.P. & Oliveira, E.A. (2004). Vibrational and thermal study of hexaaquatris (malonato) dieuropium (III) dihydrate. J. Arg. Chem. Soc., 92(1/3), 43–52.Search in Google Scholar

9. Gushchina, T.N. & Kotenko, G.A. (1983). Koord. Khim., 12(3), 325.Search in Google Scholar

10. Brzyska, W. & Paszkowska, B. (1998). Studies on the Thermal Decomposition of Rare Earth Caproates. J. Thermal Anal., 51, 561–566. https://doi.org/10.1007/BF03340193.10.1007/BF03340193Search in Google Scholar

11. Doyle, A., Felcman, J., Gambardella, M., Verani, C.N. & Tristao, M.L.B. (2000). Anhydrous copper(II) hexanoate from cuprous and cupric oxides. The crystal and molecular structure of Cu2(O2CC5H11)4. Polyhedron, 19(26/27), 2621–2627. https://doi.org/10.1016/S0277-5387(00)00568-4.10.1016/S0277-5387(00)00568-4Open DOISearch in Google Scholar

12. Pietsch, R. (1971). Untersuchungen über die extraktion von thorium, blei und eisen (III) als verbindungen der capronsäure. Anal. Chim. Acta, 53(2), 287–294. https://doi.org/10.1016/S0003-2670(01)82087-0.10.1016/S0003-2670(01)82087-0Open DOISearch in Google Scholar

13. Kolomiets, L.L., Lysenko, O.V. & Pyatnitskii, I.V. (1988). Photoelectric counter of disperse particles. Z. Anal. Khim., 43(10), 1773.Search in Google Scholar

14. Pyatnitskii, I.V., Kolomeits, L.L., Lysenko, O.V. & Sobko, M.G. (1990). Z. Anal. Khim., 45(1), 56.Search in Google Scholar

15. Kopacz, S., Szantula, J. & Pardela, T.Z. (1989). Prikladoni Khim, 62(11), 2535.Search in Google Scholar

16. Mazouchi, M., Sarkar, K., Purahmad, M., Farid, S. & Dutta, M. (2018). Photoconduction mechanism of ultra-long indium oxide nanowires. Solid-State Electronics, 148, 58–62. https://doi.org/10.1016/j.sse.2018.07.003.10.1016/j.sse.2018.07.003Open DOISearch in Google Scholar

17. Du, X. & Man, B. (2018). Effect of growth temperature on the structural and optoelectronic properties of epitaxial indium oxide films. J. Crystal Growth, 499, 18–23. https://doi.org/10.1016/j.jcrysgro.2018.07.033.10.1016/j.jcrysgro.2018.07.033Open DOISearch in Google Scholar

18. Fuchs, F. & Bechstedt, F. (2008). Indium-oxide polymorphs from first principles, Quasi particle electronic states. Phys. Rev., 77(4), 55107–55109. https://doi.org/10.1103/PhysRevB.77.155107.10.1103/PhysRevB.77.155107Open DOISearch in Google Scholar

19. Li, C., Zhang, D., Han, S., Liu, X., Tang, T. & Zhou, C. (2003). Diameter-Controlled Growth of Single-Crystalline In2O3Nanowires and Their Electronic Properties. Adv Mater., 15(2), 143–146. https://doi.org/10.1002/adma.200390029.10.1002/adma.200390029Open DOISearch in Google Scholar

20. Falcony, C., Kirtley, J.R., Dimaria, D.J., Ma, T.P. & Chen, T.C. (1985). Electroluminescence emission from indium oxide and indium-tin-oxide. J. Applied Phys., 58, 3556–3558. https://doi.org/10.1063/1.335730.10.1063/1.335730Open DOISearch in Google Scholar

21. Mane, R.S., Pathan, H.M., Lokhande, C.D. & Han, S.H. (2006). An effective use of nanocrystalline CdO thin films in dye-sensitized solar cells. Solar Energy, 80(2), 185–190. https://doi.org/10.1016/j.solener.2005.08.013.10.1016/j.solener.2005.08.013Open DOISearch in Google Scholar

22. Zhang, D., Liu, Z., Li, C., Tang, T., Liu, X., Han, S., Lei, B. & Zhou, C. (2004). Detection of NO2 down to ppb Levels Using Individual and Multiple In2O3 Nanowire Devices. Nano. Lett., 4(10), 1919–1924. https://doi.org/10.1021/nl0489283.10.1021/nl0489283Open DOISearch in Google Scholar

23. Karazhanov, S.Z., Ravindran, P., Vajeeston, P., Ulyashin, A., Finstad, T.G. & Fjellvag, H. (2007). Phase stability, electronic structure, and optical properties of indium oxide polytypes. Phys. Rev. B, 76, 75129–75131. https://doi.org/10.1103/PhysRevB.76.075129.10.1103/PhysRevB.76.075129Search in Google Scholar

24. Lin, S.E. & Wei, W.C.J. (2008). Synthesis and Investigation of Submicrometer Spherical Indium Oxide Particles. J. Am. Ceram. Soc., 91(4), 1121–1128. https://doi.org/10.1111/j.1551-2916.2008.02266.x.10.1111/j.1551-2916.2008.02266.xOpen DOISearch in Google Scholar

25. Chu, D.Y.P., Zeng, D.J. & Xu, J. (2007). Tuning the phase and morphology of In2O3 nanocrystals via simple solution routes. Nanotechnology. 18(43), 5605–5609.10.1088/0957-4484/18/43/435605Search in Google Scholar

26. Rey, J.F.Q., Plivelic, T.S., Rocha, R.A., Tadokoro, S.K., Torriani, I. & Muccillo, E.N.S. (2005). Synthesis of In2O3nanoparticles by thermal decomposition of a citrate gel precursor. J. Nanopart. Res., 7(2), 203–208. https://doi.org/10.1007/s11051-004-7899-7.10.1007/s11051-004-7899-7Open DOISearch in Google Scholar

27. Geary, W.J. (1971). The use of conductivity measurements in organic solvents for the characterisation of coordination compounds. Coord. Chem. Rev., 7(1), 81–122. https://doi.org/10.1016/S0010-8545(00)80009-0.10.1016/S0010-8545(00)80009-0Open DOISearch in Google Scholar

28. Deacon, G.B. & Phillips, R.J. (1980). Relationships between the carbon-oxygen stretching frequencies of carboxylato complexes and the type of carboxylate coordination. Coord. Chem. Rev., 33, 227–250. https://doi.org/10.1016/S0010-8545(00)80455-5.10.1016/S0010-8545(00)80455-5Open DOISearch in Google Scholar

29. Alcock, N.W., Culver, J. & Roe, S.M. (1992). The Effects of Cations and Anions on the Ionic of the development of organic substitution methods. J. Chem. Soc. Dalton Trans., 1447.Search in Google Scholar

30. Nakamoto, K. (1997). Infrared and Raman Spectra of Inorganic and Coordination Compounds, Wiley, New York.Search in Google Scholar

31. Dunn, D.D. & Hall, R.H. (1975). Purines, pyrimidines, nucleosides, and nucleotides: Physical constants and spectral properties, in G.D. Fasman (Ed.), Handbook of Biochemistry and Molecular Biology, 3rd ed., Nucleic Acids, Vol. 1, CRC Press, Cleveland, Ohio, pp. 65–215.Search in Google Scholar

32. Holm, R.H. & Cotton, F.A. (1958). Spectral Investigations of Metal Complexes of β-Diketones. I. Nuclear Magnetic Resonance and Ultraviolet Spectra of Acetylacetonates. J. Am. Chem. Soc., 80, 5658. https://doi.org/10.1021/ja01554a020.10.1021/ja01554a020Open DOISearch in Google Scholar

33. Cotton, F.A. & Wilkinson, C.W. (1972). Advanced Inorganic Chemistry, 3rd Ed, Interscience Publisher, New York.Search in Google Scholar

34. Refat, M.S., El-Korashy, S.A., Kumar, D.N. & Ahmed, A.S. (2008). FTIR, magnetic, 1H NMR spectral and thermal studies of some chelates of caproic acid: Inhibitory effect on different kinds of bacteria. Spectrochimica Acta Part A, 70(1), 217–233. https://doi.org/10.1016/j.saa.2007.07.036.10.1016/j.saa.2007.07.036Open DOISearch in Google Scholar

35. Coats, A.W. & Redfern, J.P. (1964). Kinetic Parameters from Thermogravimetric Data. Nature, 201, 68–69.10.1038/201068a0Search in Google Scholar

36. Horowitz, H.W. & Metzger, G. (1963). A New Analysis of Thermogravimetric Traces. Anal. Chem., 35, 1464–1468. https://doi.org/10.1021/ac60203a01310.1021/ac60203a013Open DOISearch in Google Scholar

37. Zsako, J. (1968). Kinetic analysis of thermogravimetric data. J. Phy. Chem., 72(7), 2406–2411. https://doi.org/10.1021/j100853a022.10.1021/j100853a022Open DOISearch in Google Scholar

38. Sharp, J.H. & Wentworth, S.A. (1969). Kinetic analysis of thermogravimetric data. Analyt. Chem., 41(14), 2060–2062. https://doi.org/10.1021/ac50159a046.10.1021/ac50159a046Open DOISearch in Google Scholar

39. Wendlandt, W.W. (1974). Thermal Methods of Analysis, John Wiley & Sons, New York, NY, USA, 2nd edition.Search in Google Scholar

40. Cullity, B.D. (1978). Elements of X-Ray Diffraction, Second Edition, Addison-Wesley Publishing Company, ch. 5.Search in Google Scholar

41. Nyquist, R.A. & Kagel, R.O. (1971). In: Infrared Spectra of Inorganic Compounds. Academic Press, New York, Vol. 4.10.1016/B978-0-12-523450-4.50005-5Search in Google Scholar

42. Keller, R.J. (1982). In: The Sigma Library of FTIR Spectra, Sigma Chemical, St. Louis, Vol. 2.Search in Google Scholar

43. Mondal, A. & Ram, S. (2004). Reconstructive phase formation of ZrO2nanoparticles in a new orthorhombic crystal structure from an energized porous ZrO(OH)2·xH2O precursor. Ceramics International, 30, 239. https://doi.org/10.1016/S0272-8842(03)00095-6.10.1016/S0272-8842(03)00095-6Open DOISearch in Google Scholar

44. Mott, N.F. & Davis, E.A. (1979). Electronic Processes in NonCrystalline Materials, 2nd ed., Clarendon Press, Oxford.Search in Google Scholar

45. Li, C., Zhang, D., Han, S., Liu, X., Tang, T., Lei, B., Liu, Z. & Zhou, C. (2003). Synthesis, Electronic Properties, and Applications of Indium Oxide Nanowires. Ann. N.Y. Acad. Sci., 1006, 104–121. DOI: 10.1196/annals.1292.007.10.1196/annals.1292.00714976013Open DOISearch in Google Scholar

46. Sreenivas, K., Rao, T. & Mansingh, A. (1985). Preparation and characterization of rf sputtered indium tin oxide films. J. Appl. Phys., 57, 384–392. https://doi.org/10.1063/1.335481.10.1063/1.335481Open DOISearch in Google Scholar

47. Shigesato, Y., Takaki, S. & Haranoh, T. (1992). Electrical and structural properties of low resistivity tin-doped indium oxide films. J. Appl. Phys., 71, 3356–3364. https://doi.org/10.1063/1.350931.10.1063/1.350931Open DOISearch in Google Scholar

48. Rey, J.F.Q., Plivelic, T.S., Rocha, R.A., Tadokoro, S.K., Torriani, I. & Muccillo, E.N.S. (2005). Synthesis of In2O3nanoparticles by thermal decomposition of a citrate gel precursor. J. Nanoparticle Res., 7, 203–208. https://doi.org/10.1007/s11051-004-7899-7.10.1007/s11051-004-7899-7Open DOISearch in Google Scholar

49. Ghanizadeh, G.H. & Asgari, G. (2009). Removal of Methylene Blue Dye from Synthetic Wastewater with Bone Char. Iran. J. Health Environ., 2, 104–113. http://ijhe.tums.ac.ir/article-1-159-en.html.Search in Google Scholar

50. Farzin, N., deh Hossein, N., Shahram, N., Asif, M., Inderjeet, T., Shilpi, A. & Kumar, G.V. (2016). Removal of malachite green from aqueous solutions by cuprous iodide– cupric oxide nano-composite loaded on activated carbon as a new sorbent for solid phase extraction: Isotherm, kinetics and thermodynamic studies. J. Mol. Liq., 213, 360–368. https://doi.org/10.1016/j.molliq.2015.07.058.10.1016/j.molliq.2015.07.058Open DOISearch in Google Scholar

51. Tang, C.W. (2013). Study of Photocatalytic Degradation of Methyl Orange on Different Morphologies of ZnO Catalysts. Modern Research in Catalysis, 2, 19–24. http://dx.doi.org/10.4236/mrc.2013.22003.10.4236/mrc.2013.22003Open DOISearch in Google Scholar

eISSN:
1899-4741
Język:
Angielski
Częstotliwość wydawania:
4 razy w roku
Dziedziny czasopisma:
Industrial Chemistry, Biotechnology, Chemical Engineering, Process Engineering