Otwarty dostęp

Examination of steam gasification of coal with physically mixed catalysts


Zacytuj

1. Monterroso, R., Fan, M., Argyle, M.D., Varga, K., Dyar, D., Tang, J., Sun, Q., Towler, B., Elliot, K.W. & Kammen, D. (2014). Characterization of the mechanism of gasification of a powder river basin coal with a composite catalyst for producing desired syngases and liquids. Appl. Catal. A Gen. 475, 116–126. DOI: 10.1016/j.apcata.2014.01.007.10.1016/j.apcata.2014.01.007Open DOISearch in Google Scholar

2. International Energy Agency, http://www.iea.orgSearch in Google Scholar

3. Ding, L., Dai, Z., Wei, J., Zhou, Z. & Yu, G. (2017). Catalytic effects of alkali carbonates on coal char gasification. J. Energy Inst. 90(4), 588-601. DOI: 10.1016/j.joei.2016.05.003.10.1016/j.joei.2016.05.003Open DOISearch in Google Scholar

4. Wang, J., Jiang, M., Yao, Y., Zhang, Y. & Cao, J. (2009). Steam gasification of coal char catalyzed by K2CO3 for enhanced production of hydrogen without formation of methane. Fuel 88(9), 1572–1579. DOI: 10.1016/j.fuel.2008.12.017.10.1016/j.fuel.2008.12.017Open DOISearch in Google Scholar

5. Chen, S.G. & Yang, R.T. (1997). Unified mechanism of alkali and alkaline earth catalyzed gasification reactions of carbon by CO2 and H2O. Energy Fuels 11(2), 421–427. DOI: 10.1021/ef960099o.10.1021/ef960099oOpen DOISearch in Google Scholar

6. Ohtsuka, Y. & Asami, K. (1997). Highly active catalysts from inexpensive raw materials for coal gasification. Catal. Today 39(1–2), 111–125. DOI: 10.1016/S0920-5861(97)00093-X.10.1016/S0920-5861(97)00093-XOpen DOISearch in Google Scholar

7. Karimi, A. & Gray, M.R. (2011). Effectiveness and mobility of catalysts for gasification of bitumen coke. Fuel 90(1), 120–125. DOI: 10.1016/j.fuel.2010.07.032.10.1016/j.fuel.2010.07.032Open DOISearch in Google Scholar

8. Kopyscinski, J., Rahman, R., Gupta, R., Mims, C. & Hill, J. (2014). K2CO3 catalyzed CO2 gasification of ash-free coal. Interactions of the catalyst with carbon in N2 and CO2 atmosphere. Fuel 117(Part B), 1181–1189. DOI: 10.1016/j.fuel.2013.07.030.10.1016/j.fuel.2013.07.030Search in Google Scholar

9. Czerski, G., Zubek, K., Grzywacz, P. & Porada, S. (2017). Effect of char preparation conditions on gasification in a carbon dioxide atmosphere. Energy Fuels 31(1), 815–823. DOI: 10.1021/acs.energyfuels.6b02139.10.1021/acs.energyfuels.6b02139Open DOISearch in Google Scholar

10. Porada, S., Czerski, G., Grzywacz, P., Makowska, D. & Dziok, T. (2017). Comparison of the gasification of coals and their chars with CO2 based on the formation kinetics of gaseous products. Thermochim. Acta 653, 97–105. DOI: 10.1016/j.tca.2017.04.007.10.1016/j.tca.2017.04.007Search in Google Scholar

11. Zubek, K., Czerski, G. & Porada, S. (2018). Determination of optimal temperature and amount of catalysts based on alkali and alkaline earth metals for steam gasification process of bituminous coal. Thermochim. Acta 665, 60–69. DOI: 10.1016/j.tca.2018.05.006.10.1016/j.tca.2018.05.006Open DOISearch in Google Scholar

12. Zubek, K., Czerski, G. & Porada, S. (2017). Comparison of catalysts based on individual alkali and alkaline earth metals with their composites used for steam gasification of coal. Energy Fuels 32(5), 5684–5692. DOI: 10.1021/acs.energyfuels.7b03562.10.1021/acs.energyfuels.7b03562Open DOISearch in Google Scholar

13. Czerski G. (2018). Study on gasification kinetics by thermovolumetric and thermogravimetric methods. Przem. Chem. 97, 214–223. DOI: 10.15199/62.2018.2.6.10.15199/62.2018.2.6Search in Google Scholar

14. Porada, S., Dziok, T., Czerski, G., Grzywacz, P. & Strugała, A. (2017). Examinations of Polish brown and hard coals in terms of their use in the steam gasification process. Mineral Resources Management 33(1), 15–34. DOI: 10.1515/gospo-2017-0007.10.1515/gospo-2017-0007Open DOISearch in Google Scholar

15. De Micco, G., Nasjleti, A. & Bohe, A. E. (2012). Kinetics of the gasification of a Rio Turbio coal under different pyrolysis temperatures. Fuel 95, 537–543. DOI: 10.1016/j.fuel.2011.12.057.10.1016/j.fuel.2011.12.057Open DOISearch in Google Scholar

16. Szekely, J., Evans, J.W. & Sohn, H.Y. (1976). Gas-solid Reactions. New York, USA: Academic Press.Search in Google Scholar

17. Bhatia, S.K. & Perlmutter, D.D. (1980). A random pore model for fluid-solid reactions: I. Isothermal, kinetic control. AIChE J. 26(3), 379–386. DOI: 10.1002/aic.690260308.10.1002/aic.690260308Open DOISearch in Google Scholar

18. Zubek, K., Czerski, G. & Porada, S. (2017). The influence of catalytic additives on kinetics of coal gasification process. In E3S Web of Conferences 14 (02012), 1–10. EDP Sciences. Retrieved March 15, 2017, from http://www.e3s-conferences.org. DOI: doi.org/10.1051/e3sconf/20171402012.10.1051/e3sconf/20171402012Open DOISearch in Google Scholar

19. Ding, L., Zhang, Y., Wang, Z., Huang, J. & Fang, Y. (2014). Interaction and its induced inhibiting or synergistic effects during co-gasification of coal char and biomass char. Bioresour. Technol. 173, 11–20. DOI: 10.1016/j.biortech.2014.09.007.10.1016/j.biortech.2014.09.00725280109Open DOISearch in Google Scholar

20. Yamashita, H., Nomura, M. & Tomita, A. (1992). Local structures of metals dispersed on coal. 4. Local structure of calcium species on coal after heat treatment and carbon dioxide gasification. Energy Fuels 6(5), 656–661. DOI: 10.1021/ef00035a018.10.1021/ef00035a018Open DOISearch in Google Scholar

21. Huang, X., Zhang, F., Fan, M. & Wang, Y. (2015). Catalytic Coal Gasification. Sustainable Catalytic Processes, 179–199. DOI: 10.1016/B978-0-444-59567-6.00007-8.10.1016/B978-0-444-59567-6.00007-8Open DOISearch in Google Scholar

22. Li, B., Wei, L., Yang, H., Wang, X. & Chen, H. (2014). The enhancing mechanism of calcium oxide on water gas shift reaction for hydrogen production. Energy, 68, 248–254. DOI: 10.1016/j.energy.2014.02.088.10.1016/j.energy.2014.02.088Open DOISearch in Google Scholar

23. Sassmanova, V., Janouchova, R., Frantik, J., Machackova, I. & Juchelkova, D. (2014). Influence of catalysts on water-gas shift reaction and hydrogen recovery. IERI Procedia, 8, 164–169. DOI: 10.1016/j.ieri.2014.09.027.10.1016/j.ieri.2014.09.027Search in Google Scholar

24. Gnanamani, M.K., Jacobs, G., Shafer, W.D., Sparks, D.E., Hopps, S., Thomas, G.A. & Davis, B.H. (2014). Low temperature water–gas shift reaction over alkali metal promoted cobalt carbide catalysts. Topics in Catalysis, 57(6–9), 612–618. DOI: 10.1007/s11244-013-0219-7.10.1007/s11244-013-0219-7Open DOISearch in Google Scholar

25. Watanabe, R., Sakamoto, Y., Yamamuro, K., Tamura, S., Kikuchi, E. & Sekine, Y. (2013). Role of alkali metal in a highly active Pd/alkali/Fe2O3 catalyst for water gas shift reaction. Appl. Catalysis A: General, 457, 1–11. DOI: 10.1016/j.apcata.2013.03.010.10.1016/j.apcata.2013.03.010Open DOISearch in Google Scholar

eISSN:
1899-4741
Język:
Angielski
Częstotliwość wydawania:
4 razy w roku
Dziedziny czasopisma:
Industrial Chemistry, Biotechnology, Chemical Engineering, Process Engineering