Otwarty dostęp

A novel DOPO-g-KH550 modification wood fibers and its effects on the properties of composite phenolic foams


Zacytuj

1. Lei, S., Guo, Q., Zhang, D., Shi, J., Liu, L. & Wei, X.. (2010). Preparation and properties of the phenolic foams with controllable nanometer pore structure. J. Appl. Poly. Sci. 117(6):3545-3550. DOI:10.1002/app.32280.10.1002/app.32280Open DOISearch in Google Scholar

2. Yang, H., Wang, X., Yuan, H., Song, L., Hu, Y., Yuen, R.K.K. (2012). Fire performance and mechanical properties of phenolic foams modified by phosphorus-containing polyethers. J. Poly. Res. 19(3):9831. DOI:10.1007/s10965-012-9831-710.1007/s10965-012-9831-7Open DOISearch in Google Scholar

3. Ma, Y., Wang, C. & Chum, F. (2017). Effects of fiber surface treatments on the properties of wood fiber-phenolic foam composites. Bioresources. 12(3), 4722–4736. DOI: 10.15376/biores.12.3.4722-4736.10.15376/biores.12.3.4722-4736Search in Google Scholar

4. Rangari, V.K., Hassan, T.A., Zhou, Y., Mahfuz, H., Jeelani, S. & Prorok, B.C. (2010). Cloisite clay-infused phenolic foam nanocomposites. J. Appl. Polym. Sci. 103(1), 308–314. DOI:10.1002/app.25287.10.1002/app.25287Open DOISearch in Google Scholar

5. Bledzki, A.K. & Gassan, J. (1999). Composites reinforced with cellulose based fibres. Prog. Polym. Sci. 24(2), 221–274. DOI: 10.1016/S0079-6700(98)00018-5.10.1016/S0079-6700(98)00018-5Open DOISearch in Google Scholar

6. Canché-Escamilla, G., Cauich-Cupul, J.I., Mendizábal, E., Puig, J.E., Vázquez-Torres, H. & Herrera-Franco, P.J. (1999). Mechanical properties of acrylate-grafted henequen cellulose fibers and their application in composites. Composites Part A Applied Science & Manufacturing. 30(3), 349–359. DOI: 10.1016/S1359-835X(98)00116-X.10.1016/S1359-835X(98)00116-XOpen DOISearch in Google Scholar

7. Mitra, B.C., Basak, R.K. & Sarkar, M. (1998). Studies on jute-reinforced composites, its limitations, and some solutions through chemical modifications of fibers. J. Appl. Polym. Sci. 67(6), 1093–1100. DOI:10.1002/(SICI)1097-4628(19980207)67:6<1093:AID-APP17>3.0.CO;2-1.10.1002/(SICI)1097-4628(19980207)67:6<1093:AID-APP17>3.0.CO;2-1Open DOISearch in Google Scholar

8. Rana, A.K., Mandal, A., Mitra, B.C., Jacobson, R., Rowell, R. & Banerjee, A.N.. (1998). Short jute fiber-reinforced polypropylene composites: Effect of compatibilizer. J. Appl. Polym. Sci. 69(2), 329–338. DOI: 10.1002/(SICI)1097-4628(19980711)69:2<329::AID-APP14>3.0.CO;2-R.10.1002/(SICI)1097-4628(19980711)69:2<329::AID-APP14>3.0.CO;2-RSearch in Google Scholar

9. Xie, Y., Hill, C.A.S., Xiao, Z., Militz, H. & Mai, C. (2010). Silane coupling agents used for natural fiber/polymer composites: A review. Composites Part A. 41(7), 806–819. DOI: 10.1016/j.compositesa.2010.03.005.10.1016/j.compositesa.2010.03.005Open DOISearch in Google Scholar

10. Maldas, D. & Kokta, B.V. (1993). Performance of Hybrid Reinforcements in PVC Composites: Part Iural fiber/polymer composites: A review. Compositesforcements. J. Testing & Evaluation. 21(1), 5. DOI: 10.1177/073168449201101002.10.1177/073168449201101002Search in Google Scholar

11. Mohanty, A.K., Misra, M. & Drzal, L.T. (2002). Sustainable Bio-Composites from Renewable Resources: Opportunities and Challenges in the Green Materials World. J. Polym. & the Environ. 10(1–2), 19–26. DOI: 10.1023/A:1021013921916.10.1023/A:1021013921916Open DOISearch in Google Scholar

12. Sanadi, A.R., Caulfield, D.F., Rowell, R.M. (1994). Reinforcing polypropylene with natural fibers. Societyofplasticsengineers Inc. :v50(:n4):27-28. DOI: 10.1515/pjct-2017-0077.10.1515/pjct-2017-0077Open DOISearch in Google Scholar

13. Rider, A. & Arnott, D. (2000). Boiling water and silane pre-treatment of aluminium alloys for durable adhesive bonding. International journal of adhesion and adhesives. 20(3), 209–220. DOI: 10.1016/S0143-7496(99)00046-9.10.1016/S0143-7496(99)00046-9Open DOISearch in Google Scholar

14. Mittal, K.L. (2007). Silanes and other coupling agents. CRC Press.10.1163/ej.9789067644525.i-410Search in Google Scholar

15. Ma, Y., Wang, C. & Chu, F. (2017). The structure and properties of eucalyptus fiber/phenolic foam composites under N-ng. International journal of adhesion and adhesives. Polymers & the Environment. arch. mount of DKWF19(4), 116–121. DOI: 10.1515/pjct-2017-0077.10.1515/pjct-2017-0077Open DOISearch in Google Scholar

16. Zhang, W., Li, X. & Yang, R. (2011). Novel flame retardancy effects of DOPO-POSS on epoxy resins. Polymer Degradation & Stability. 96(12), 2167–2173. DOI: 10.1016/j.polymdegradstab.2011.09.016.10.1016/j.polymdegradstab.2011.09.016Open DOISearch in Google Scholar

17. Zang, L., Wagner, S., Ciesielski, M. & Mb, P. 2011.09.016.2011.09.016” f DOPO-PO-shaped and hyperbranched phosphorus-containing flame retardants in epoxy resins. Polymers for Advanced Technologies. 22(7), 1182ng flame retardan/pat.1990.10.1002/pat.1990Search in Google Scholar

18. Perret, B., Schartela, M., Ciesielski, J. & Diederichs, M. Dvanced Technologies. epoxy resins. Polymer Degradation & Stability. γ-aminopropyl trimethoxy silane pretreatments. Polish Journal of Chemical Technology. was 6%.47(5), 1081–1089. DOI: 10.1016/j.eurpolymj.2011.02.008.10.1016/j.eurpolymj.2011.02.008Open DOISearch in Google Scholar

19. Dumitrascu, A. (2012). Flame retardant polymeric materials achieved by incorporation of styrene monomers containing both nitrogen and phosphorus. Polymer Degradation & Stability. 97(12), 2611–2618. DOI: 10.1016/j.polymdegrad-stab.2012.07.012.10.1016/j.polymdegrad-stab.2012.07.012Open DOISearch in Google Scholar

20. Sun, D. & Yao, Y. (2011). Synthesis of three novel phosphorus-containing flame retardants and their application in epoxy resins. Polymer Degradation & Stability. 96(10), 1720–1724. DOI: 10.1016/j.polymdegradstab.2011.08.004.10.1016/j.polymdegradstab.2011.08.004Search in Google Scholar

21. Wang, P. & Cai, Z.. (2017). Highly efficient flame-retardant epoxy resin with a novel DOPO-based triazole compound: Thermal stability, flame retardancy and mechanism. Polymer Degradation & Stability. 137. DOI: 10.1016/j.polymdegrad-stab.2017.01.014.10.1016/j.polymdegrad-stab.2017.01.014Open DOISearch in Google Scholar

22. Carja, I.D., D. Serbezeanu, T. Vladbubulac, C. Hamciuc, A. Coroaba, G. & Lisa, C.G. L DOPO-based triazole compound: Thermal stability, flame retardancy and mechanism. Polymer Degradation & Stability. ical Technlame retardant epoxy resins. J. Mater. Chem. A. 2(38), 16230–16241.DOI: 10.1039/c4ta03197k.10.1039/c4ta03197kOpen DOISearch in Google Scholar

23. Yuxiang, O. & Jianjun, L. (2006). Flame Retardants: Property, Preparation and Application. Beijing, Chemical Industry Press.Search in Google Scholar

24. Shan, G., Jia, L., Zhao, T., Jin, C., Liu, R. & Xiao, Y.. (2017). A novel DDPSi-FR flame retardant treatment and its effects on the properties of wool fabrics. Fibers & Polymers. 18(11), 2196–2203. DOI: 10.1007/s12221-017-7244-210.1007/s12221-017-7244-2Open DOISearch in Google Scholar

25. Tang, C., Yan, H., Li, M. & Lv, Q. (2017). A novel phosphorus-containing polysiloxane for fabricating high performance electronic material with excellent dielectric and thermal properties. J. Mater. Sci. Mater. Electron. 1–10. DOI: 10.1007/s10854-017-7904-410.1007/s10854-017-7904-4Open DOISearch in Google Scholar

26. Fang, Y., Zhou, X., Xing, Z. & Wu, Y. (2017). An effective flame retardant for poly(ethylene terephthalate) synthesized by phosphaphenanthrene and cyclotriphosphazene. J. Appl. Polym. Sci. 134(35). DOI: 10.1002/app.45246.10.1002/app.45246Open DOISearch in Google Scholar

27. Wan, X., Zhan, Y., Long, Z., Zeng, G., He, Y. (2017). Core@double-shell structured magnetic halloysite nanotube nano-hybrid as efficient recyclable adsorbent for methylene blue removal. Chem. Eng. J. 330(15), 491–504.DOI: 10.1016/j.cej.2017.07.178.10.1016/j.cej.2017.07.178Open DOISearch in Google Scholar

28. Wan, X., Y. Zhan, Z. Long, G. Zeng, Y. Ren, Y. He. (2017). High-performance magnetic poly (arylene ether nitrile) nanocomposites: co-modification of Fe3O4 via mussel inspired poly (dopamine) and amino functionalized silane KH550. Applied Surface Science. 425(15), 905–914. DOI: 10.1016/j.apsusc.2017.07.136.10.1016/j.apsusc.2017.07.136Open DOISearch in Google Scholar

29. Su, J., J. Zhang. (2017). Effect of treated mica on rheological, cure, mechanical, and dielectric properties of ethylene propylene diene monomer (EPDM)/barium titanate (BaTiO3)/mica. J. Appl. Polym. Sci. 134(19). DOI: 10.1002/app.44833.10.1002/app.44833Open DOISearch in Google Scholar

30. Ni, P., Y. Fang, L. Qian, Y. Qiu. (2017). Flame-retardant behavior of a phosphorus/silicon compound on polycarbonate. J. Appl. Polym. Sci. DOI: 10.1002/app.45815.10.1002/app.45815Open DOISearch in Google Scholar

31. Chen, T., Chen, X., Wang, M., Hou, P., Jie, C., Li, J., Xu, Y., Zeng, B. & Dai, L. (2017). A novel halogen-free co-curing agent with linear multi-aromatic rigid structure as flame-retardant modifier in epoxy resin. Polymers for Advanced Technologies. DOI: 10.1002/pat.4170.10.1002/pat.4170Open DOISearch in Google Scholar

32. Cui, Y., Lee, S., Noruziaan, B., Cheung, M. & Tao, J. (2008). Fabrication and interfacial modification of wood/recycled plastic composite materials. Composites Part A Applied Science & Manufacturing. 39(4), 655–661. DOI: 10.1016/j.compositesa.2007.10.017.10.1016/j.compositesa.2007.10.017Open DOISearch in Google Scholar

33. Valadez-Gonzalez, A., Cervantes-Uc, J.M., Olayo, R. & Herrera-Franco, P.J. (1999). Chemical modification of henequén fibers with an organosilane coupling agent. Composites Part B Engineering. 30(3), 321–331. DOI: 10.1016/S1359-8368(98)00055-9.10.1016/S1359-8368(98)00055-9Open DOISearch in Google Scholar

34. Wang, L., Han, G. & Zhang, Y. (2007). Comparative study of composition, structure and properties of Apocynum venetum fibers under different pretreatments. Carbohydrate Polymers. 69(2), 391–397. DOI: 10.1016/j.carbpol.2006.12.028.10.1016/j.carbpol.2006.12.028Open DOISearch in Google Scholar

35. Lu, B., L. Zhang, J. Zeng, e. et al. (2005). Natural Fiber Composites Material Chemical Industry Press.Search in Google Scholar

36. Huo, S., Wang, J., Yang, S., Chen, X., Zhang, B., Wu, Q. & Zhang, B. (2017). Flame-retardant performance and mechanism of epoxy thermosets modified with a novel reactive flame retardant containing phosphorus, nitrogen, and sulfur. Polym. Adv. Technol. 29(1), 497–506. DOI: 10.1002/pat.4145.10.1002/pat.4145Open DOISearch in Google Scholar

37. Qiu, Y., Wachtendorf, V., Klack, P., Qian, L., Liu, Z. & Schartel, B. (2017). Improved flame retardancy by synergy between cyclotetrasiloxane and phosphaphenanthrene/triazine compounds in epoxy thermoset. Polymer International. 66(12), 1883–1890. DOI: 10.1002/pi.5466.10.1002/pi.5466Open DOISearch in Google Scholar

38. Jia, P., Zhang, M., Hu, L., Liu, C., Feng, G., Yang, X., Bo, C. & Zhou, Y. (2015). Development of vegetable oil based plasticizer for preparing flame retardant poly (vinyl chloride) materials. Rsc Advances. 5(93), 76392–76400. DOI: 10.1039/c5ra10509a.10.1039/C5RA10509ASearch in Google Scholar

39. Jia, P., Zhang, M., Hu, L., Zhou, J., Feng, G. & Zhou, Y. (2015). Thermal degradation behavior and flame retardant mechanism of poly(vinyl chloride) plasticized with a soybean--oil-based plasticizer containing phosphaphenanthrene groups. Polymer Degradation & Stability. 121, 292–302. DIO: 10.1016/j.polymdegradstab.2015.09.020.10.1016/j.polymdegradstab.2015.09.020Search in Google Scholar

40. Jia, P., Zhang, M., Liu, C., Hu, L., Feng, G., Bo, C. & Zhou, Y. (2015). Effect of chlorinated phosphate ester based on castor oil on thermal degradation of poly (vinyl chloride) blends and its flame retardant mechanism as secondary plasticizer. Rsc Advances. 5(51), 1169–41178. DOI: 10.1039/c5ra05784a.10.1039/C5RA05784ASearch in Google Scholar

41. Li, Y.Y., Wang, B. & Ma, M.G. (2017). The enhancement performances of cotton stalk fiber/PVC composites by sequential two steps modification. J. Appl. Polym. Sci. 135(14):46090. DOI: 10.1002/app.4609010.1002/app.46090Search in Google Scholar

42. Tengsuthiwat, J., Asawapirom, U., Siengchin, S. & Karger & Kocsis, J. oacute, zsef. (2017). Mechanical, thermal, and water absorption properties of melamine–formalde-hyde-treated sisal fiber containing polylactic acid composites. J. Appl. Polym. Sci. 135(2), 45681. DOI: 10.1002/app.45681.10.1002/app.45681Search in Google Scholar

43. Ye, X., Wang, H., Wu, Z., Zhou, H. & Tian, X. (2018). Synthesis and functional features of wood fiber-polypropylene materials: Based on wood fibers with assembling nano-coating via adopting simple in situ-hydrothermal mechanism. Polym. Composites. 39(1), 5–13. DOI: 10.1002/pc.23894.10.1002/pc.23894Open DOISearch in Google Scholar

44. Wang, C. & Xu, G. (2010). Research on Hard-segment Flame-retardant Modification of Waterborne Polyurethane. China Coatings. DOI: 10.13531/j.cnki.china.coatings.2010.08.010.Search in Google Scholar

45. Dong, Q., Liu, M., Ding, Y., Wang, F., Gao, C., Liu, P., Wen, B., Zhang, S. & Yang, M. (2013). Synergistic effect of DOPO immobilized silica nanoparticles in the intumescent flame retarded polypropylene composites. Polym. Adv. Technol. 24(8), 732–739. DOI: 10.1002/pat.3137.10.1002/pat.3137Search in Google Scholar

46. Oktay, B., Emrah, Y., Ding, F., Wang, C., Gao, P., Liu, B., Wen, S., Zhang, M., Yang. (2013). Synergistic effect of DOPO immobilized silica nanoparticles in the intumescent flame retarded polyprop131(22), 132–142. DOI: 10.1016/j.polymer.2017.10.043.10.1016/j.polymer.2017.10.043Open DOISearch in Google Scholar

eISSN:
1899-4741
Język:
Angielski
Częstotliwość wydawania:
4 razy w roku
Dziedziny czasopisma:
Industrial Chemistry, Biotechnology, Chemical Engineering, Process Engineering