Zacytuj

1. Prociak, A., Rokicki, G. & Ryszkowska, J. (2014). Polyurethane materials. Warszawa, Poland: Wydaw. Naukowe PWN. [in Polish].Search in Google Scholar

2. Lubczak, J., Chmiel-Szukiewicz, E., Duliban, J., Głowacz--Czerwonka, D., Lubczak, R., Łukasiewicz, B., Zarzyka, I., Łodyga, A., Tyński, P., Kozioł, M., Majerczyk, Z. & Minda--Data, D. (2014). Polyurethane foams with 1,3,5-triazine ring of improved thermal stability. Przem. Chem., 93 (10), 1690–1697. DOI: 10.12916/przemchem.2014.1690. [in Polish].Search in Google Scholar

3. Król, P. (2009). Polyurethanes — A review of 60 years of their syntheses and applications. Polimery, 54 (7–8), 489–500. [in Polish].10.14314/polimery.2009.489Search in Google Scholar

4. Czupryński, B. (2004). Issues in chemistry and technology of polyurethanes. Bydgoszcz, Poland: Wydaw. Akad. Bydg. [in Polish].Search in Google Scholar

5. Paciorek-Sadowska, J., Czupryński, B. & Liszkowska, J. (2011). Application of waste products from agricultural-food industry for production of rigid polyurethane-polyisocyanurate foams. J. Porous Mater, 18, 631–638. DOI: DOI 10.1007/s10934-010-9419-8.10.1007/s10934-010-9419-8Open DOISearch in Google Scholar

6. Kurańska, M., Prociak, A., Kirpluks, M. & Cabulis, U. (2013). Porous polyurethane composites based on bio--components. J. Com. Sci. Tech., 75, 70–76. DOI: 10.1016/j.compscitech.2012.11.014.10.1016/j.compscitech.2012.11.014Open DOISearch in Google Scholar

7. Piszczyk, Ł., Strankowski, M., Danowska, M., Hejna, A. & Haponiuk, J. (2014). Rigid polyurethane foams from a polyglycerol-based polyol. Eur. Polym. J., 57, 143–150. DOI: 10.1016/j.eurpolymj.2014.05.012.10.1016/j.eurpolymj.2014.05.012Open DOISearch in Google Scholar

8. Bartuzi, K. (2012). Vegetable oils, characteristics and production technology. J. Nutri Life, 9. Retrieved October 16, 2017 from http://www.NutriLife.pl/index.php?art=52 [in Polish].Search in Google Scholar

9. Miao, S., Sun, L., Wang, P., Liu, R., Su, Z. & Zhang, S. (2012). Soybean oil-based polyurethane networks as candidate biomaterials: Synthesis and biocompatibility. Eur. J. Lipid Sci. Technol, 114, 1165–1174. DOI: 10.1002/ejlt.201200050.10.1002/ejlt.201200050Open DOISearch in Google Scholar

10. Miao, S., Zhang, S., Su, Z. & Wang, P. (2013). Synthesis of bio-based polyurethanes from epoxidized soybean oil and isopropanolamine. J. App. Polym. Sci, 10, 1929–1936. DOI: 10.1002/app.37564.10.1002/app.37564Search in Google Scholar

11. Garrison, T., Murawski, A. & Quirino, R.L. (2016). Bio--based polymers with potential for biodegradability. Polymers, 8 (7), 262. DOI: 10.3390/polym8070262.10.3390/polym8070262643235430974537Open DOISearch in Google Scholar

12. Ibrahim, S., Ahmad, A. & Mohamed, N.S. (2015). Characterization of Novel Castor Oil-Based Polyurethane Polymer Electrolytes. Polymers, 7 (4), 747–759. DOI: 10.3390/polym7040747.10.3390/polym7040747Open DOISearch in Google Scholar

13. Abdolhosscini, F. & Besharati Givi, M.K. (2016). Characterization of a Biodegradable Polyurethane Elastomer Derived from Castor Oil. Am. J. Polym. Sci, 6 (1), 18–27. DOI: 10.5923/j.ajps.20160601.03.10.5923/j.ajps.20160601.03Open DOISearch in Google Scholar

14. Noreen, A., Zia, K.M., Zuber, M., Tabasum, S. & Zahoor, A.F. (2016). Bio-based polyurethane: An efficient and environment friendly coating systems: A review. P. Org. Coat., 91, 25–32. DOI: 10.1016/j.porgcoat.2015.11.018.10.1016/j.porgcoat.2015.11.018Open DOISearch in Google Scholar

15. Fu, C., Hu, X., Yang, Z. Shen, L. & Zheng, Z. (2015). Preparation and properties of waterborne bio-based polyurethane/siloxane cross-linked films by an in situ sol–gel process. P. Org. Coat., 84, 18–27. DOI: 10.1016/j.porgcoat.2015.02.008.10.1016/j.porgcoat.2015.02.008Open DOISearch in Google Scholar

16. Kong, X., Liu, G. & Curtis J. (2011). Characterization of canola oil based polyurethane wood adhesives. Int. J. Adh. Adh., 559–564. DOI: 10.1016/j.ijadhadh.2011.05.004.10.1016/j.ijadhadh.2011.05.004Open DOISearch in Google Scholar

17. Prociak, A., Kurańska, M., Cabulis, U. & Kirpluks, M. (2017). Rapeseed oil as main component in synthesis of bio--polyurethane-polyisocyanurate porous materials modified with carbon fibers. Polymer Testing, 59, 478–486. DOI: 10.1016/j.polymertesting.2017.03.006.10.1016/j.polymertesting.2017.03.006Open DOISearch in Google Scholar

18. Bueno-Ferrer, C., Hablot, E., del Carmen Garrigos, M., Bocchini, S., Averous, L. & Jimenez, A. (2012). Relationship between morphology, properties and degradation parameters of novative biobased thermoplastic polyurethanes obtained from dimer fatty acids. Polym. Deg. Stab., 97, 1964–1969. DOI: 10.1016/j.polymdegradstab.2012.03.002.10.1016/j.polymdegradstab.2012.03.002Open DOISearch in Google Scholar

19. Malewska, E., Bąk, S., Kurańska, M. & Prociak, A. (2016). The effect of various rapeseed oil-based polyols on selected properties of flexible polyurethane foams. Polimery, 61, 799–806. DOI: 10.14314/polimery.2016.799.10.14314/polimery.2016.799Search in Google Scholar

20. Tu, Y., Kiatsimkul, P., Suppes, G. & Hsieh, F. (2007). Physical properties of water-blown rigid polyurethane foams from vegetable oil-based polyols. J. Appl. Polym. Sci., 105, 453–459. DOI: 10.1002/app.26060.10.1002/app.26060Open DOISearch in Google Scholar

21. Veronese, V.B., Menger, R.K., de C. Forte, M.M. & Petzhold, C.L. (2011). Rigid polyurethane foam based on vegetable oil. J. Appl. Polym. Sci., 120, 530–537. DOI: 10.1002/app.33185.10.1002/app.33185Open DOISearch in Google Scholar

22. Prociak, A. (2008). Heat-insulating properties of rigid polyurethane foams synthesized with use of vegetable oils – based polyols. Polimery, 53, 195–200. [in Polish].10.14314/polimery.2008.195Search in Google Scholar

23. Prociak, A. (2008). New generation polyurethane thermal insulation materials. Kraków, Poland: Wydaw. Politech.Krak. [in Polish]Search in Google Scholar

24. Rojek, P. & Prociak, A. (2012). Effect of different rapeseed-oil-based polyols on mechanical properties of flexible polyurethane foams. J. Appl. Polym. Sci., 125, 2936–2945. DOI: 10.1002/app.36500.10.1002/app.36500Open DOISearch in Google Scholar

25. Kurańska, M. & Prociak, A. (2014). Environmentally friendly polyurethane-polyisocyanurate foams for applications in the construction industry. Czasopismo techniczne Budownictwo, 5-B, 149–152.Search in Google Scholar

26. Horak, P. & Benes, H. (2015). Polyurethane foams based entirely on recycled polyols derived from natural oils. Polimery, 60 (9), 579–585. DOI: 10.14314/polimery.2015.579.10.14314/polimery.2015.579Search in Google Scholar

27. Liszkowska, J., Czupryński, B., Paciorek-Sadowska, J. & Michałowski, S. (2016). Thermal and flammable properties of rigid PUR-PIR foams obtained by using new compound based on 2-hydroxypropane-1,2,3-tricarboxylic acid. J. Cell. Plast., 52 (3), 321–341. DOI: 10.1177/0021955X15570983.10.1177/0021955X15570983Open DOISearch in Google Scholar

28. Liszkowska, J., Czupryński, B. & Paciorek-Sadowska, J. (2016). Thermal properties of polyurethane-polyisocyanurate (PUR-PIR) foams modified with tris (5-hydroxypenthyl) citrate. J. Adv. Chem. Eng, 6, 2. DOI: 10.4172/2090-4568.1000148.10.4172/2090-4568.1000148Open DOISearch in Google Scholar

29. Paciorek-Sadowska, J., Borowicz, M., Czupryński, B. & Liszkowska, J. (2017). Composites of rigid polyurethane-polyisocyanurate foams with oak bark. Polimery, 62 (9), 666–672. DOI: 10.14314/polimery.2017.666. [in Polish].10.14314/polimery.2017.666Search in Google Scholar

30. Paciorek-Sadowska, J., Borowicz, M., Czupryński, B., Liszkowska, J. & Tomaszewska, E. (2018). Application of halloysite as filler in the production of rigid PUR-PIR foams. Polimery, 63 (3), 185–190. DOI: 14314/polimery.2018.3.3. [in Polish].10.14314/polimery.2018.3.3Search in Google Scholar

31. Smagowicz, A. (2011). Obtaining of epoxidized rapeseed oil. Pubished doctoral dissertation, Zachodniopomorski Uniwersytet Technologiczny, Szczecin, Poland. [in Polish].Search in Google Scholar

eISSN:
1899-4741
Język:
Angielski
Częstotliwość wydawania:
4 razy w roku
Dziedziny czasopisma:
Industrial Chemistry, Biotechnology, Chemical Engineering, Process Engineering