Otwarty dostęp

The Effect of Subacute Poisoning with Deltamethrin on the Levels of Interleukin 1ß and Tumour Necrosis Factor Α in the Livers and Kidneys of Mice


Zacytuj

1. Saillenfait AM, Ndiaye D, Sabaté JP. Pyrethroids: exposure and health effects--an update. Int J Hyg Environ Health. 2015;218(3):281-92;10.1016/j.ijheh.2015.01.00225648288 Search in Google Scholar

2. Hill N, Zhou HN, Wang P, Guo X, Carneiro I, Moore SJ. A household randomized, controlled trial of the efficacy of 0.03% transfluthrin coils alone and in combination with long-lasting insecticidal nets on the incidence of Plasmodium falciparum and Plasmodium vivax malaria in Western Yunnan Province, China. Malar J. 2014; 13:208;10.1186/1475-2875-13-208405759824885993 Search in Google Scholar

3. Tang W, Wang D, Wang J, Wu Z, Li L, Huang M, Xu S, Yan D. Pyrethroid pesticide residues in the global environment: An overview. Chemosphere. 2018 Jan;191:990-1007. doi: 10.1016/j.chemosphere.2017.10.115. Epub 2017 Oct 23. PMID: 29145144;29145144 Open DOISearch in Google Scholar

4. Morgan MK. Children’s exposures to pyrethroid insecticides at home: a review of data collected in published exposure measurement studies conducted in the United States. Int J Environ Res Public Health. 2012;9(8):2964-85;10.3390/ijerph9082964344759923066409 Search in Google Scholar

5. Al-Omar MS, Naz M, Mohammed SAA, Mansha M, Ansari MN, Rehman NU, Kamal M, Mohammed HA, Yusuf M, Hamad AM, Akhtar N, Khan RA. Pyrethroid-Induced Organ Toxicity and Anti-Oxidant-Supplemented Amelioration of Toxicity and Organ Damage: The Protective Roles of Ascorbic Acid and α-Tocopherol. Int J Environ Res Public Health. 2020 25;17(17):6177;10.3390/ijerph17176177750332732854455 Search in Google Scholar

6. Nieradko-Iwanicka B, Borzęcki A. Subacute poisoning of mice with deltamethrin produces memory impairment, reduced locomotor activity, liver damage and changes in blood morphology in the mechanism of oxidative stress. Pharmacol Rep. 2015;67(3):535-41;10.1016/j.pharep.2014.12.01225933966 Search in Google Scholar

7. Skolarczyk J, Pekar J, Nieradko-Iwanicka B. Immune disorders induced by exposure to pyrethroid insecticides. Postepy Hig Med Dosw (Online). 2017;71(0):446-453;10.5604/01.3001.0010.382728665275 Search in Google Scholar

8. Amin KA, Hashem KS. Deltamethrin-induced oxidative stress and biochemical changes in tissues and blood of catfish (Clarias gariepinus): antioxidant defense and role of alpha-tocopherol. BMC Vet Res. 2012; 8:45;10.1186/1746-6148-8-45348214522537979 Search in Google Scholar

9. Jaremek M, Nieradko-Iwanicka B. The effect of subacute poisoning with fenpropathrin on mice kidney function and the level of interleukin 1β and tumor necrosis factor α. Mol Biol Rep. 2020;47(6):4861-4865;10.1007/s11033-020-05480-w729584532385770 Search in Google Scholar

10. Burns CJ, Pastoor TP. Pyrethroid epidemiology: a quality-based review. Crit Rev Toxicol. 2018; 48(4):297-311;10.1080/10408444.2017.142346329389244 Search in Google Scholar

11. Glorennec P, Serrano T, Fravallo M, Warembourg C, Monfort C, Cordier S, Viel JF, Le Gléau F, Le Bot B, Chevrier C. Determinants of children’s exposure to pyrethroid insecticides in western France. Environ Int. 2017; 104:76-82;10.1016/j.envint.2017.04.00728453973 Search in Google Scholar

12. Abdel-Daim MM, Abdelkhalek NK, Hassan AM. Antagonistic activity of dietary allicin against deltamethrin-induced oxidative damage in freshwater Nile tilapia; Oreochromis niloticus. Ecotoxicol Environ Saf. 2015; 111:146-52;10.1016/j.ecoenv.2014.10.01925450927 Search in Google Scholar

13. Dubey N, Khan AM, Raina R. Sub-acute deltamethrin and fluoride toxicity induced hepatic oxidative stress and biochemical alterations in rats. Bull Environ Contam Toxicol. 2013; 91(3):334-8;10.1007/s00128-013-1052-123820696 Search in Google Scholar

14. Abdou RH, Abdel-Daim MM. Alpha-lipoic acid improves acute deltamethrin-induced toxicity in rats. Can J Physiol Pharmacol. 2014;92(9):773-9;10.1139/cjpp-2014-028025167376 Search in Google Scholar

15. Lu Q, Sun Y, Ares I, Anadón A, Martínez M, Martínez-Larrañaga MR, Yuan Z, Wang X, Martínez MA. Deltamethrin toxicity: A review of oxidative stress and metabolism. Environ Res. 2019; 170:260-28110.1016/j.envres.2018.12.04530599291 Search in Google Scholar

16. Zhong YF, Huang XW, Shi N. [Role of interleukin-1 beta in deltamethrin neurotoxicity]. Zhonghua Lao Dong Wei Sheng Zhi Ye Bing Za Zhi. 2009; 27(4):244-6; Search in Google Scholar

17. Han B, Lv Z, Zhang X, Lv Y, Li S, Wu P, Yang Q, Li J, Qu B, Zhang Z. Deltamethrin induces liver fibrosis in quails via activation of the TGF-β1/Smad signaling pathway. Environ Pollut. 2020; 259:113870;10.1016/j.envpol.2019.11387031918140 Search in Google Scholar

18. Feriani A, Hachani R, Tir M, Ghazouani L, Mufti A, Borgi MA, Allagui MS. Bifenthrin exerts proatherogenic effects via arterial accumulation of native and oxidized LDL in rats: the beneficial role of vitamin E and selenium. Environ Sci Pollut Res Int. 2020; 27(6):5651-5660;10.1007/s11356-018-3771-730465240 Search in Google Scholar

19. Aouey B, Derbali M, Chtourou Y, Bouchard M, Khabir A, Fetoui H. Pyrethroid insecticide lambda-cyhalothrin and its metabolites induce liver injury through the activation of oxidative stress and proinflammatory gene expression in rats following acute and subchronic exposure. Environ Sci Pollut Res Int. 2017;24(6):5841-5856;10.1007/s11356-016-8323-428058584 Search in Google Scholar

20. Gargouri B, Bhatia HS, Bouchard M, Fiebich BL, Fetoui H. Inflammatory and oxidative mechanisms potentiate bifenthrin-induced neurological alterations and anxiety-like behavior in adult rats. Toxicol Lett. 2018; 294:73-86;10.1016/j.toxlet.2018.05.02029775722 Search in Google Scholar

21. Piłat D, Mika J. The role of interleukin-1 family of cytokines in nociceptive transmission. Ból 2014;15(4): 39-47;10.5604/1640324x.1132019 Search in Google Scholar

22. Nieradko-Iwanicka B, Konopelko M. Effect of Lambdacyhalothrin on Locomotor Activity, Memory, Selected Biochemical Parameters, Tumor Necrosis Factor α, and Interleukin 1ß in a Mouse Model. Int J Environ Res Public Health. 2020; 17(24):9240;10.3390/ijerph17249240776478333321891 Search in Google Scholar

23. Abdel-Daim MM, El-Ghoneimy A. Synergistic protective effects of ceftriaxone and ascorbic acid against subacute deltamethrin-induced nephrotoxicity in rats. Ren Fail. 2015; 37(2):297-304;10.3109/0886022X.2014.98301725691087 Search in Google Scholar

24. Klimowska A, Amenda K, Rodzaj W, Wileńska M, Jurewicz J, Wielgomas B. Evaluation of 1-year urinary excretion of eight metabolites of synthetic pyrethroids, chlorpyrifos, and neonicotinoids. Environ Int. 2020; 145:106119;10.1016/j.envint.2020.10611932950790 Search in Google Scholar

25. Radwan M, Jurewicz J, Wielgomas B, Piskunowicz M, Sobala W, Radwan P, Jakubowski L, Hawuła W, Hanke W. The association between environmental exposure to pyrethroids and sperm aneuploidy. Chemosphere. 2015;128:42-8;10.1016/j.chemosphere.2014.12.07725655817 Search in Google Scholar

26. Dziewirska E, Radwan M, Wielgomas B, Klimowska A, Radwan P, Kałużny P, Hanke W, Słodki M, Jurewicz J. Human Semen Quality, Sperm DNA Damage, and the Level of Urinary Concentrations of 1N and TCPY, the Biomarkers of Nonpersistent Insecticides. Am J Mens Health. 2019; 13(1):1557988318816598;10.1177/1557988318816598677554630813854 Search in Google Scholar

27. Radwan M, Jurewicz J, Wielgomas B, Sobala W, Piskunowicz M, Radwan P, Hanke W. Semen quality and the level of reproductive hormones after environmental exposure to pyrethroids. J Occup Environ Med. 2014; 56(11):1113-9;10.1097/JOM.000000000000029725376404 Search in Google Scholar

28. Wielgomas B, Nahorski W, Czarnowski W. Urinary concentrations of pyrethroid metabolites in the convenience sample of an urban population of Northern Poland. Int J Hyg Environ Health. 2013; 216(3):295-300;10.1016/j.ijheh.2012.09.00123021951 Search in Google Scholar

29. Klimowska A, Wielgomas B. Off-line microextraction by packed sorbent combined with on solid support derivatization and GC-MS: Application for the analysis of five pyrethroid metabolites in urine samples. Talanta. 2018;176:165-171;10.1016/j.talanta.2017.08.01128917736 Search in Google Scholar

30. Wielgomas B, Piskunowicz M. Biomonitoring of pyrethroid exposure among rural and urban populations in northern Poland. Chemosphere. 2013; 93(10):2547-53;10.1016/j.chemosphere.2013.09.07024156982 Search in Google Scholar

31. Rodzaj W, Wileńska M, Klimowska A, Dziewirska E, Jurewicz J, Walczak-Jędrzejowska R, Słowikowska-Hilczer J, Hanke W, Wielgomas B. Concentrations of urinary biomarkers and predictors of exposure to pyrethroid insecticides in young, Polish, urban-dwelling men. Sci Total Environ. 2021; 773:145666;10.1016/j.scitotenv.2021.14566633596511 Search in Google Scholar

32. Jurewicz J, Radwan M, Wielgomas B, Sobala W, Piskunowicz M, Radwan P, Bochenek M, Hanke W. The effect of environmental exposure to pyrethroids and DNA damage in human sperm. Syst Biol Reprod Med. 2015; 61(1):37-43.10.3109/19396368.2014.98188625376306 Search in Google Scholar