Otwarty dostęp

Design Improvement of Permanent Magnet Motor Using Single- and Multi-Objective Approaches


Zacytuj

Bianchi, N. (2005). Electrical Machine Analysis Using Finite Elements, 1st ed. Boca Raton: CRC Press. Search in Google Scholar

Brisset, S. and Brochet, P. (1998). Optimization of Switched Reluctance Motors Using Deterministic Methods with Static and Dynamic Finite Element Simulations. IEEE Transactions on Magnetics, 34(5), pp. 2853–2856. doi: 10.1109/20.717664. Search in Google Scholar

Cvetkovski, G. (2001). Investigation of Methods and Contribution to the Development of Genetic Algorithms for Optimal Design of Permanent Magnet Synchronous Disc Motor. PhD. thesis. Skopje: Faculty of Electrical Engineering and Information Technologies, p. 253. Search in Google Scholar

Cvetkovski, G. and Petkovska, L. (2008). Efficiency maximisation in structural design optimisation of permanent magnet synchronous motor. In: Proceedings of the 18th International Conference on Electrical Machines-ICEM-2008 on CD, Vilamoura, Portugal, 6–9 September 2008, pp. 1–6. Search in Google Scholar

Cvetkovski, G. and Petkovska, L. (2010). Specific Power Optimal Design of Permanent Magnet Synchronous Motor Using GA. Przeglad Elektrotechniczny-Organ Stowarzyszenia Elektrykow Polskich, SIGMA-NOT-Wydawnictwo Czasopism Ksiazek Technicznych, 86(12), pp. 24–27. Search in Google Scholar

Cvetkovski, G. and Petkovska, L. (2013). Cogging torque minimisation of PM synchronous motor using genetic algorithm. In: Proceedings of the 16th International Symposium on Electromagnetic Fields in Mechatronics, Electrical and Electronic Engineering - ISEF’2013 on USB, paper ID 229, Ohrid, Macedonia, 12–14 September 2013, pp. 1–8. Search in Google Scholar

Cvetkovski, G. and Petkovska, L. (2021). Selected Nature-Inspired Algorithms in Function of PM Synchronous Motor Cogging Torque Minimisation. Power Electronics and Drives, 6(1), pp. 204–217. doi: 10.2478/pead-2021-0012. Search in Google Scholar

Di Barba, P., Mognaschi, M. E., Petkovska, L. and Cvetkovski, G. (2022). Cost-effective Optimal Synthesis of the Efficiency Map of Permanent Magnet Synchronous Motors. International Journal of Applied Electromagnetics and Mechanics, 69(2), pp. 189–199. doi: 10.3233/JAE-210201. Search in Google Scholar

Di Barba, P., Mognaschi, M. E., Rezaei, N., Lowther, D. A. and Rahman, T. (2019). Many-Objective Shape Optimisation of IPM Motors for Electric Vehicle Traction. International Journal of Applied Electromagnetics and Mechanics, 60(S1), pp. S149–S162. doi: 10.3233/JAE-191113. Search in Google Scholar

Gebregergis, A., Chowdhury, M. H., Islam, M. S. and Sebastian, T. (2014). Modeling of Permanent-Magnet Synchronous Machine Including Torque Ripple Effects. IEEE Transactions on Industry Applications, 51, pp. 232–239. doi: 10.1109/TIA.2014.2334733. Search in Google Scholar

Gieras, J. (2004). Analytical Approach to Cogging Torque Calculation of PM Brushless Motors. IEEE Transactions on Industry Applications, 40(5), pp. 1310–1316. doi: 10.1109/TIA.2004.834108. Search in Google Scholar

Gottvald, A., Preis, K., Magele, C., Biro, O. and Savini, A. (1992). Global Optimization Methods for Computational Electromagnetics. IEEE Transactions on Magnetics, 28(2), pp. 1537–1540. doi: 10.1109/20.123990. Search in Google Scholar

Hameyer, K. and Belmans, R. (1999). Numerical Modelling and Design of Electrical Machines and Devices. Billerica, MA, USA: WIT Press. Search in Google Scholar

Holland, J. H. (1973). Genetic Algorithms and the Optimal Allocation of Trials. SIAM Journal on Computation, 2(2), pp. 88–105. doi: 10.1137/0202009. Search in Google Scholar

Holland, J. H. (1995). Adaptation in Natural and Artificial Systems. Ann Arbour: University of Michigan Press. Search in Google Scholar

Im, D.-H., Park, S.-C. and Im, J.-W. (1993). Design of Single-Sided Linear Induction Motor Using the Finite Element Method and SUMT. IEEE Transactions on Magnetics, 29(2), pp. 1762–1766. Search in Google Scholar

Infolityca. (2016). User’s Manual. Inflolytica, Towcester, UK. Search in Google Scholar

Janikow, C. Z. and Michalewicz, Z. (1991). An experimental comparison of binary and floating point representations in genetic algorithms. In: Proceedings of the Fourth International Conference on Genetic Algorithms, San Diego, CA, USA, July 1991, pp. 31–35. Search in Google Scholar

Liu, X. and Slemon, G. (1991). An Improved Method of Optimization for Electrical Machines. IEEE Transactions on Energy Conversion, 6(3), pp. 492–496. doi: 10.1109/60.84326. Search in Google Scholar

MotorSolve. (2016). User’s Manual. Infolytica. Search in Google Scholar

Ruuskanen, V., Nerg, J., Rilla, M. and Pyrhonen, J. (2016). Iron Loss Analysis of the Permanent-Magnet Synchronous Machine Based on Finite-Element Analysis Over the Electrical Vehicle Drive Cycle. IEEE Transactions on Industrial Electronics, 63, pp. 4129–4136. doi: 10.1109/TIE.2016.2549005. Search in Google Scholar

Shklyarskiy, Y. E., Shklyarskiy, A. Y. and Lutonin, A. S. (2021). Sizing Parameters of Interior Permanent Magnet Synchronous Motor Based on Torque-speed Characteristics. Journal Physics: Conference Series, 1753(012026), pp. 1–9. Search in Google Scholar

Sim, D. J., Jung, H. K., Hahn, S. Y. and Won, J. S. (1997). Application of Vector Optimization Employing Modified Genetic Algorithms to Permanent Magnet Motor Design. IEEE Transactions on Magnetics, 33(2), pp. 1888–1891. doi: 10.1109/20.582654. Search in Google Scholar

Üler, G. F., Mohammed, O. A. and Koh, C. S. (1995). Design Optimisation of Electrical Machines using Genetic Algorithms. IEEE Transactions on Magnetics, 31(3), pp. 2008–2011. doi: 10.1109/20.376437. Search in Google Scholar

Üler, G. F. and Mohammed, O. A. (1996). Ancillary Techniques for the Practical Implementation of GAs to the Optimal Design of Electromagnetic Devices. IEEE Transactions on Magnetics, 32(3), pp. 1194–1197. doi: 10.1109/20.497457. Search in Google Scholar

Wurtz, F., Richomme, M., Bigeon, J. and Sabonnadiere, J. C. (1997). A Few Results for Using Genetic Algorithms in the Design of Electrical Machines. IEEE Transactions on Magnetics, 33(2), pp. 1892–1895. doi: 10.1109/20.582656. Search in Google Scholar

eISSN:
2543-4292
Język:
Angielski
Częstotliwość wydawania:
Volume Open
Dziedziny czasopisma:
Computer Sciences, Artificial Intelligence, Engineering, Electrical Engineering, Electronics