Otwarty dostęp

Selected Nature-Inspired Algorithms in Function of PM Synchronous Motor Cogging Torque Minimisation


Zacytuj

Ackermann, B., Janssen, J. H., Sottek, R. and Van Steen, R. I. (1992). New Technique for Reducing Cogging Torque in a Class of Brushless DC Motors. IEE Proceedings of Electric Power Applications, 139(4), pp. 315–320.10.1049/ip-b.1992.0038 Search in Google Scholar

Benlamine, R., Dubas, F., Randi, S. A., Lhotellier, D. and Espanet, C., (2013). Design by Optimization of an Axial-Flux Permanent-Magnet Synchronous Motor Using Genetic Algorithms. 2013 International Conference on Electrical Machines and Systems (ICEMS), 23–26, pp. 13–17.10.1109/ICEMS.2013.6754546 Search in Google Scholar

Bianchi, N. and Bolognani, S. (2002). Design Techniques for Reducing the Cogging Torque in Surface-Mounted PM Motors. IEEE Transactions on Industry Applications, 38(5), pp. 1259–1265.10.1109/TIA.2002.802989 Search in Google Scholar

Bianchi, N. and Bolognani, S. (2000). Reducing Torque Ripple in PM Synchronous Motors by Pole Shifting. Proceedings of the International Conference on Electrical Machines ICEM, 28–30, pp. 1222–1226. Search in Google Scholar

Chitara, D., Niazi, K. R., Swarnkar, A., and Gupta, N., (2018). Cuckoo Search Optimization Algorithm for Designing of a Multimachine Power System Stabilizer. IEEE Transactions on Industry Applications, 54(4), pp. 3056–3065.10.1109/TIA.2018.2811725 Search in Google Scholar

Cvetkovski, G. and Petkovska, L. (2016). Multi-Objective Approach of Design Optimization of Axial Flux Permanent Magnet Motor. International Journal of Applied Electromagnetics and Mechanics, 51(s1), pp. S115–S123.10.3233/JAE-2006 Search in Google Scholar

Cvetkovski, G. and Petkovska, L. (2021). Cogging Torque Minimization of PM Synchronous Motor Using Nature Based Algorithms. IEEE International Power Electronics and Motion Control Conference IEEE PEMC2020, 25–29, pp. 419–425.10.1109/PEMC48073.2021.9432507 Search in Google Scholar

Deb, K. and Jain, H. (2014). An Evolutionary Many-Objective Optimization Algorithm Using Reference-Point Based Non-dominated Sorting Approach, Part I: Solving Problems With Box Constraints, IEEE Transactions on Evolutionary Computation, 18(4), pp. 577–601.10.1109/TEVC.2013.2281535 Search in Google Scholar

Deodhar, R. P. Stanton, D. A. Jahns, T. M. and Miller, T. J. (1996). Prediction of Cogging Torque Using the Flux-MMF Diagram Technique. IEEE Transactions on Industry Application, 32(3), pp. 569–575.10.1109/28.502168 Search in Google Scholar

Di Barba, P., Mognaschi, M. E., Rezaei, N., Lowther, D. A. and Rahman, T. (2019). Many-Objective Shape Optimisation of IPM Motors for Electric Vehicle Traction. International Journal of Applied Electromagnetics and Mechanics, 60(S1), pp. S149–S162.10.3233/JAE-191113 Search in Google Scholar

Eom, J. B., Hwang, S. M., Kim, T. J., Jeong, W. B. and Kang, B. S. (2001). Minimization of Cogging Torque in Permanent Magnet Motors by Teeth Pairing and Magnet Arc Design Using Genetic Algorithm. Journal of Magnetism and Magnetic Materials, 226–230(2), pp. 1229–1231.10.1016/S0304-8853(01)00053-1 Search in Google Scholar

Fei, W. and Luk, P. C. (2010). A New Technique of Cogging Torque Suppression in Direct-Drive Permanent-Magnet Brushless Machines. IEEE Transactions on Industry Applications, 46(4), pp. 1332–1340.10.1109/TIA.2010.2049551 Search in Google Scholar

Gieras, J. F. (2004). Analytical Approach to Cogging Torque Calculation of PM Brushless Motors. IEEE Transactions on Industry Applications, 40(5), pp. 1310–1316.10.1109/TIA.2004.834108 Search in Google Scholar

Goto, M. and Kobayashi, K. (1983). An Analysis of the Cogging Torque of a DC Motor and a New Technique of Reducing the Cogging Torque. Electrical Engineering Japan, 103(5), pp. 113–120.10.1002/eej.4391030515 Search in Google Scholar

Ho, S. L., Chen, N. and Fu, W. N. (2010). An Optimal Design Method for the Minimization of Cogging Torques of a Permanent Magnet Motor Using FEM and Genetic Algorithm. IEEE Transactions on Applied Superconductivity, 20(3), pp. 861–864.10.1109/TASC.2009.2038717 Search in Google Scholar

Holland, J. H. (1995). Adaptation in Natural and Artificial Systems. Ann Arbor: University of Michigan Press. Search in Google Scholar

Infolytica, User’s manual, Infolytica Corporation,Wappenham, 2016. Search in Google Scholar

Ishikawa, T. and Slemon, G. R. (1993). A Method of Reducing Ripple Torque in Permanent Magnet Motors Without Skewing. IEEE Transactions on Magnetics, 29(2), pp. 2028–2031.10.1109/20.250808 Search in Google Scholar

Islam, M. S., Mir, S. and Sebastian, T. (2004). Issues in Reducing the Cogging Torque of Mass-Produced Permanent-Magnet Brushless DC Motor. IEEE Transactions on Industry Applications, 40(3), pp. 813–820.10.1109/TIA.2004.827469 Search in Google Scholar

Jensen, W. R., Pham, T. Q. and Foster, S. N. (2019). Comparison of multi-objective optimization methods applied to electrical machine design. In: K. Deb, eds., Evolutionary Multi-Criterion Optimization. Cham: Springer, pp. 719–730.10.1007/978-3-030-12598-1_57 Search in Google Scholar

Kamal, C., Thyagarajan, T., Selvakumari, M. and Kalpana, D., (2017). Cogging Torque Minimization in Brushless DC Motor Using PSO and GA Based Optimization. 2017 Trends in Industrial Measurement and Automation (TIMA), pp. 1–5.10.1109/TIMA.2017.8064815 Search in Google Scholar

Kang, G. H. and Hur, J. (2005). Analytical Prediction and Reduction of the Cogging Torque in Interior Permanent Magnet Motor. IEEE International Conference on Electric Machines and Drives, pp. 1620–1624.10.1109/IEMDC.2005.195936 Search in Google Scholar

Kumar, A. and Chakarverty, S. (2011). Design Optimization for Reliable Embedded System Using Cuckoo Search. 2011 3rd International Conference on Electronics Computer Technology, 1, pp. 264–268.10.1109/ICECTECH.2011.5941602 Search in Google Scholar

Lei, G., Bramerdorfer, G., Ma, B., Guo, Y. and Zhu, J. (2021). Robust Design Optimization of Electrical Machines: Multi-Objective Approach. IEEE Transactions on Energy Conversion, 36(1), pp. 390–401.10.1109/TEC.2020.3003050 Search in Google Scholar

Li, T. and Slemon, G. (1988). Reduction of Cogging Torque in Permanent Magnet Motors. IEEE Transactions on Magnetics, 24(6), pp. 2901–2903.10.1109/20.92282 Search in Google Scholar

Lukaniszyn, M., Jagiela, M. and Wrobel, R. (2004). Optimization of Permanent Magnet Shape for Minimum Cogging Torque Using a Genetic Algorithm. IEEE Transactions on Magnetics, 40(2), pp. 1228–1231.10.1109/TMAG.2004.825185 Search in Google Scholar

Ma, G., Qiu, X., Yang, J., Bu, F., Dou, Y. and Cao, W. (2018). Structural Parameter Optimization to Reduce Cogging Torque of the Consequent Pole In-Wheel Motor. 2018 IEEE 18th International Power Electronics and Motion Control Conference (PEMC), pp. 170–175.10.1109/EPEPEMC.2018.8521869 Search in Google Scholar

Mirahki, H., Moallem, M. and Rahimi, S. A. (2014). Design Optimization of IPMSM for 42 V Integrated Starter Alternator Using Lumped Parameter Model and Genetic Algorithms. IEEE Transactions on Magnetics, 50(3), pp. 114–119.10.1109/TMAG.2013.2285358 Search in Google Scholar

Mirjalili, S., Dong, J. S. and Lewis, A. (2020). Nature-Inspired Optimizers–Theories, Literature Reviews and Applications. Springer, Cham, Switzerland.10.1007/978-3-030-12127-3 Search in Google Scholar

Motor Solve, User’s manual, Infolytica Corporation,Wappenham 2016. Search in Google Scholar

Quintal-Palomo, R., Dybkowski, M. and Qwoździewicz, M. A. (2016). Parametric Analysis for the Design of a 4 Pole Radial Permanent Magnet Generator for Small Wind Turbines. Power Electronics and Drives, 36(2), pp. 175–186. Search in Google Scholar

Siregar, M., Mohamed, T. Z., Wohon, D. R. and Nur, T. (2019). Optimizing the Cogging Torque Reduction of Integral Slot Number in Permanent Magnet Machine. 2019 International Conference on Technologies and Policies in Electric Power & Energy, pp. 1–5.10.1109/IEEECONF48524.2019.9102530 Search in Google Scholar

Sun, S., Jiang, F., Li, T. and Yang, K. (2019). Optimization of Cogging Torque in a Hybrid Axial and Radial Flux Permanent Magnet Machine. 22nd International Conference on Electrical Machines and Systems (ICEMS), pp. 1–5.10.1109/ICEMS.2019.8921947 Search in Google Scholar

Uler, G. F., Mohammed, O. A. and Koh, C. S. (1995). Design Optimization of Electrical Machines Using Genetic Algorithms. IEEE Transactions on Magnetics, 31(3), pp. 2008–2011.10.1109/20.376437 Search in Google Scholar

Wu, L. J., Zhu, Z. Q., Staton, D. A., Popescu, M. and Hawkins, D. (2012). Comparison of Analytical Models of Cogging Torque in Surface-Mounted PM Machines. IEEE Transactions on Industrial Electronics, 59(6), pp. 2414–2425.10.1109/TIE.2011.2143379 Search in Google Scholar

Yang, X. S. (2014). Nature-Inspired Optimization Algorithms. Elsevier, London.10.1016/B978-0-12-416743-8.00010-5 Search in Google Scholar

Yang, X. S. and Deb, S. (2010). Engineering optimization by Cuckoo Search. International Journal of Mathematical Modelling and Numerical Optimization, 1(4), pp. 330–343.10.1504/IJMMNO.2010.035430 Search in Google Scholar

Zarko, D., Ban, D., and Lipo, T. A. (2008). Analytical Solution for Cogging Torque in Surface Permanent-Magnet Motors Using Conformal Mapping. IEEE Transactions on Magnetics, 44(1), pp. 52–65.10.1109/TMAG.2007.908652 Search in Google Scholar

Zhu, Z. Q. and Howe, D. (2000). Influence of Design Parameters on Cogging Torque in Permanent Magnet Machines. IEEE Transactions on Energy Conversion, 15(4), pp. 407–412.10.1109/60.900501 Search in Google Scholar

eISSN:
2543-4292
Język:
Angielski
Częstotliwość wydawania:
Volume Open
Dziedziny czasopisma:
Computer Sciences, Artificial Intelligence, Engineering, Electrical Engineering, Electronics