Zacytuj

Angelstam, P. K., Bütler, R., Lazdinis, M., Mikusiński, G. & Roberge, J. M. 2003. Habitat thresholds for focal species at multiple scales and forest biodiversity conservation. – Dead wood as an example. – Annales Zoologici Fennici 40(6): 473–482. Search in Google Scholar

Arnett, E. B., Kroll, A. J. & Duke, S. D. 2010. Avian foraging and nesting use of created snags in intensively-managed forests of western Oregon, USA. – Forest Ecology and Management 260(10): 1773–1779. DOI: 10.1016/j.foreco.2010.08.021 Search in Google Scholar

Aszalós, R., Szigeti, V., Harmos, K., Csernák, S., Frank, T. & Ónodi, G. 2020. Foraging activity of woodpeckers on various forms of artificially created deadwood. – Acta Ornithologica 55(1): 63–76. DOI: 10.3161/00016454AO2020.55.1.007 Search in Google Scholar

Aulén, G. 1991. Increasing insect abundance by killing deciduous trees: A method of improving the food situation for endangered woodpeckers. – Holarctic Ecology 14(1): 68–80. DOI: 10.1111/j.1600-0587.1991.tb00635.x Search in Google Scholar

Barry, A. M., Hagar, J. C. & Rivers, J. W. 2018. Use of created snags by cavity-nesting birds across 25 years. – Journal of Wildlife Management 82(7): 1376–1384. DOI: 10.1002/jwmg.21489 Search in Google Scholar

Bobiec, A., Gutowski, J. M., Laudenslayer, W. F., Pawlaczyk, P. & Zub, K. 2005. The afterlife of a tree. – WWF Poland, Warsawa-Hajnóvka Search in Google Scholar

Bocca, M., Carisio, L. & Rolando, A. 2007. Habitat use, home ranges and census techniques in the Black Woodpecker Dryocopus martius in the Alps. – Ardea 95: 17–29. DOI: 10.5253/078.095.0103 Search in Google Scholar

Brandeis, T. J., Newton, M., Filip, G. M. & Cole, E. C. 2002. Cavity-nester habitat development in artificially made Douglas-Fir Snags. – Journal of Wildlife Management 66(3): 625–633. DOI: 10.2307/3803129 Search in Google Scholar

Brooks, M. E., Kristensen, K, van Benthem, K. J., Magnusson, A., Berg, C. W., Nielsen, A., Skaug, H. J., Maechler, M. & Bolker, B. M. 2017. glmmTMB balances speed and flexibility among packages for zero-inflated generalized linear mixed modeling. – The R Journal 9(2): 378–400. DOI: 10.3929/ethz-b-000240890 Search in Google Scholar

Campion, D., Pardo, I., Elósegui, M. & Villanua, D. 2020. Gps Telemetry and Home Range of the White-Backed Woodpecker Dendrocopos leucotos: Results of the First Experience. – Acta Ornithologica 55(1): 77–87. DOI: 10.3161/00016454AO2020.55.1.008 Search in Google Scholar

Charman, E. C., Smith, K. W., Gruar, D. J., Dodd, S. & Grice, P. V. 2010. Characteristics of woods used recently and historically by Lesser Spotted Woodpeckers Dendrocopos minor in England. – Ibis 152(3): 543–555. DOI: 10.1111/j.1474-919X.2010.01020.x Search in Google Scholar

Christensen, M., Hanh, K., Mountford, E. P., Ódor, P., Standovár, T., Rozenbergar, D., Diaci, J., Wijdeven, S., Meyer, P., Winter, S. & Vrska, T. 2005. Dead wood in European beech (Fagus sylvatica) forest reserves. – Forest Ecology and Management 210: 267–282. DOI: 10.1016/j.foreco.2005.02.032 Search in Google Scholar

Czeszczewik, D. 2009. Foraging behaviour of White-backed Woodpeckers Dendrocopos leucotos in a primeval forest (Białowiea National Park, NE Poland): Dependence on habitat resources and season. – Acta Ornithologica 44(2): 109–118. DOI: 10.3161/000164509X482687 Search in Google Scholar

Czeszczewik, D., Zub, K., Stanski, T., Sahel, M., Kapusta, A. & Walankiewicz, W. 2015. Effects of forest management on bird assemblages in the Bialowieza Forest, Poland. – iForest 8: 377–385. DOI: 10.3832/ifor1212-007 Search in Google Scholar

Drever, M. C., Aitken, K. E. H., Norris, A. R. & Martin, K. 2008. Woodpeckers as reliable indicators of bird richness, forest health and harvest. – Biological Conservation 141: 624–634. DOI: 10.1016/j. biocon.2007.12.004 Search in Google Scholar

Farris, K. L. & Zack, S. 2005. Woodpecker-snag interactions: an overview of current knowledge in ponderosa pine systems. – USDA Forest Service General Technical Report 198: 183–195. Search in Google Scholar

Fox, J. & Weisberg, S. 2018. Visualizing fit and lack of fit in complex regression models with predictor effect plots and partial residuals. – Journal of Statistical Software 87(9): 1–27. https://www.jstatsoft.org/article/view/v087i09. Search in Google Scholar

Fox, J. 2003. Effect Displays in R for Generalised Linear Models. – Journal of Statistical Software 8(15): 1–27. https://www.jstatsoft.org/article/view/v008i15. Search in Google Scholar

Garmendia, A., Cárcamo, S. & Schwendtner, O. 2006. Forest management considerations for conservation of Black Woodpecker Dryocopus martius and White-backed Woodpecker Dendrocopos leucotos populations in Quinto Real (Spanish Western Pyrenees). – Biodiversity and Conservation 15(4): 1399–1415. DOI: 10.1007/s10531-005-5410-0 Search in Google Scholar

Gibbons, P. & Lindenmayer, D. 2002. Tree hollows and wildlife conservation in Australia. – CSIRO Publishing Search in Google Scholar

Gorman, G. 2004. Woodpeckers of Europe. A study of the European Picidae. – Bruce Coleman Search in Google Scholar

Gorman, G. 2011. The Black Woodpecker. A monograph on Dryocopus martius. – Lynx Edicions Search in Google Scholar

Gorman, G. 2015. Foraging signs and cavities of some European woodpeckers (Picidae): Identifying the clues that lead to establishing the presence of species. – Denisia 36: 87–97. Search in Google Scholar

Grubb, T. C. Jr. 1975. Weather dependent foraging behaviour of some birds wintering in a deciduous woodland. – Condor 77: 175–182. Search in Google Scholar

Hallett, J. G., Lopez, T., O’Connell, M. A. & Borysewicz, M. A. 2001. Decay dynamics and avian use of artificially created snags. – Northwest Science 75(4): 378–386. Search in Google Scholar

Hardersen, S. 2004. Habitat usage of Woodpeckers and Nuthatch. – Ricerche Naturalistiche a Bosco Della Fontana – Quaderni Conservazione Habitat 3: 49–59. (in Italian with English Summary) Search in Google Scholar

Hothorn, T., Bretz, F. & Westfall, P. 2008. Simultaneous inference in general parametric models. – Biometrical Journal 50(3): 346–363. DOI: 10.1002/bimj.200810425 Search in Google Scholar

Jacobs, J. 1974. Quantitative measurement of food selection. – Oecologia 14: 413–417. DOI: 10.1007/BF00384581 Search in Google Scholar

Jusino, M. A., Lindner, D. L., Banik, M. T. & Walters, J. R. 2015. Heart rot hotel: fungal communities in Redcockaded Woodpecker excavations. – Fungal Ecology 14: 33–43. DOI: 10.1016/j.funeco.2014.11.002 Search in Google Scholar

Keserű, Zs., Csiha, I., Kovács, Cs., Rásó, J. & Rédei, K. 2017. Vörös tölgyesek természetes felújítása és erdőnevelése: Esettanulmányok [Natural regeneration of red oak (Quercus rubra) stands: case studies]. – Erdészettudományi Közlemények 7(2): 115–125. DOI: 10.17164/EK.2017.008 (in Hungarian) Search in Google Scholar

Kilgo, J. C. & Vukovich, M. A. 2014. Can snag creation benefit a primary cavity nester: Response to an experimental pulse in snag abundance. – Biological Conservation 171: 21–28. DOI: 10.1016/j.biocon.2014.01.003 Search in Google Scholar

Kosiński, Z. 2006. Factors affecting the occurrence of Middle Spotted and Great Spotted Woodpeckers in deciduous forests – a case study from Poland. – Annales Zoologici Fennici 43(2): 198–210. Search in Google Scholar

Kosiński, Z. & Kempa, M. 2007. Density, distribution and nest-sites of woodpeckers Picidae, in a managed forest of Western Poland. – Polish Journal of Ecology 55(3): 519–533. Search in Google Scholar

Kosiński, Z., Pluta, M., Ulanowska, A., Walczak, Ł., Winiecki, A. & Zarębski, M. 2017. Do increases in the availability of standing dead trees affect the abundance, nest-site use, and niche partitioning of Great Spotted and Middle Spotted Woodpeckers in riverine forests? – Biodiversity and Conservation 27(1): 123–145. DOI: 10.1007/s10531-017-1425-6 Search in Google Scholar

Kraigher, H., Jurc, D., Kalan, P., Kutnar, L., Levanic, T., Rupel, M. & Smolej, I. 2002. Beech coarse woody debris characteristics in two virgin forest reserves in southern Slovenia. – Zbornik Gozdarstva in Lesarstva 69: 91–134. Search in Google Scholar

Kruszyk, R. 2003. Population density and foraging habits of the Middle Spotted Woodpecker Dendrocopos medius and Great Spotted Woodpecker D. major in the Odra valley woods near Wroclaw. – Notatki Ornitologiczne 44: 75–88. Search in Google Scholar

Lenth, R. V. 2021. emmeans: Estimated Marginal Means, aka Least-Squares Means. R package version 1.5.4. – https://CRAN.R-project.org/package=emmeans Search in Google Scholar

Lõhmus, A., Kinks, R. & Soon, M. 2010. The importance of dead-wood supply for woodpeckers in Estonia. – Baltic Forestry 16(1): 76–86. Search in Google Scholar

Mazgajski, T. D. 1998. Nest-site characteristic of Great Spotted Woodpecker Dendrocopos major in central Poland. – Polish Journal of Ecology 46(1): 33–41. Search in Google Scholar

Melletti, M. & Penteriani, V. 2003. Nesting and feeding tree selection in the endangered White-backed Woodpecker, Dendrocopos leucotos lilfordi. – Wilson Bulletin 115(3): 299–306. DOI: 10.1676/03-022 Search in Google Scholar

Mikusinski, G. 2006. Woodpeckers: distribution, conservation, and research in a global perspective. – Annales Zoologici Fennici 43: 86–95. Search in Google Scholar

Mikusiński, G., Gromadzki, M. & Chylarecki, P. 2001. Woodpeckers as indicators of forest bird diversity. – Conservation Biology 15(1): 208–217. DOI: 10.1046/j.1523-1739.2001.99236.x Search in Google Scholar

Ónodi, G. & Csörgő, T. 2014. Habitat preference of Great-spotted Woodpecker (Dendrocopos major linnaeus, 1758) and Lesser-spotted Woodpecker (Dendrocopos minor Linnaeus, 1758) in the presence of invasive plant species – Preliminary study. – Ornis Hungarica 22(2): 50–64. DOI: 10.2478/orhu-2014-0018 Search in Google Scholar

Ónodi, G. & Winkler, D. 2016. Nest site characteristics of the Great-spotted Woodpecker in a bottomland riparian forest in the presence of invasive tree species. – Ornis Hungarica 24(1): 81–95. DOI: 10.1515/orhu-2016-0005 Search in Google Scholar

Pasinelli, G. & Hegelbach, J. 1997. Characteristics of trees preferred by foraging Middle Spotted Woodpecker Dendrocopos medius in Northern Switzerland. – Ardea 85: 203–209. Search in Google Scholar

Pasinelli, G. 2007. Nest site selection in Middle and Great Spotted Woodpeckers Dendrocopos medius & Dendrocopos major: implications for forest management and conservation. – Biodiversity Conservation 16: 1283–1298. DOI: 10.1007/s10531-007-9162-x Search in Google Scholar

Puverel, C., Abourachid, A., Böhmer, C., Leban, J. M., Svoboda, M. & Paillet, Y. 2019. This is my spot: What are the characteristics of the trees excavated by the Black Woodpecker? A case study in two managed French forests. – Forest Ecology and Management 453: 117621. DOI: 10.1016/j.foreco.2019.117621 Search in Google Scholar

R Core Team 2018. R: A Language and environment for statistical computing. – https://www.r-project.org/ Search in Google Scholar

Rédei, K., Csiha, I. & Keserű, Zs. 2011. Vöröstölgyesek nevelése [Silvicultural treatment of red oak stands]. – Erdészeti Lapok 146(11): 333–334. (in Hungarian) Search in Google Scholar

Roberge, J. M., Angelstam, P. & Villard, M. A. 2008. Specialised woodpeckers and naturalness in hemiboreal forests – Deriving quantitative targets for conservation planning. – Biological Conservation 141(4): 997–1012. DOI: 10.1016/j.biocon.2008.01.010 Search in Google Scholar

Sandström, J., Bernes, C., Junninen, K., Lõhmus, A., Macdonald, E., Müller, J. & Jonsson, B. G. 2019. Impacts of dead wood manipulation on the biodiversity of temperate and boreal forests. A systematic review. – Journal of Applied Ecology 56(7): 1770–1781. DOI: 10.1111/1365-2664.13395 Search in Google Scholar

St-Amand, J., Tremblay, J. A. & Martin, K. 2018. Foraging ecology of the Williamson’s Sapsucker: Implications for forest management. – Condor 120(3): 680–702. DOI: 10.1650/CONDOR-17-238.1 Search in Google Scholar

Swallow, S. K., Howard, R. A. & Gutierrez, R. J. 1988. Snag preferences of woodpeckers in a northeastern hardwood foraging. – Wilson Bulletin 100(2): 236–246. Search in Google Scholar

Thompson, I. D., Baker, J. A. & Ter-Mikaelian, M. 2003. A review of the long-term effects of post-harvest silviculture on vertebrate wildlife, and predictive models, with an emphasis on boreal forests in Ontario, Canada. – Forest Ecology and Management 177: 441–469. DOI: 10.1016/S0378-1127(02)00453-X Search in Google Scholar

Tomiałojć, L., Wesolowski, T. & Walankiewicz, W. 1984. Breeding bird community of a primaeval temperate forest (Bialowieza National Park, Poland). – Acta Ornithologica 20(8): 241–308. Search in Google Scholar

Török, J. 1990. Resource partitioning among three woodpecker species Dendrocopos spp. during the breeding season. – Holarctic Ecology 13: 257–264. DOI: 10.1111/j.1600-0587.1990.tb00617.x Search in Google Scholar

Virkkala, R. 2006. Why study woodpeckers? The significance of woodpeckers in forest ecosystems. – Annales Zoologici Fennici 43(2): 82–85. Search in Google Scholar

Walankiewicz, W., Czeszczewik, D., Tumiel, T. & Stański, T. 2011. Woodpecker abundance in the Białowieża Forest – a comparison between deciduous, strictly protected and managed stands. – Ornis Polonica 52: 161–168. Search in Google Scholar

Weiss, S. A., Corace, R. G., Toman, E. L., Herms, D. A. & Goebel, P. C. 2018. Wildlife implications across snag treatment types in jack pine stands of Upper Michigan. – Forest Ecology and Management 409: 407–416. DOI: 10.1016/j.foreco.2017.10.013 Search in Google Scholar

Wesolowski, T. 2007. Lessons from long-term hole-nester studies in a primeval temperate forest. – Journal of Ornithology 148: 395–405. DOI: 10.1007/s10336-007-0198-1 Search in Google Scholar

Wesołowski, T., Mitrus, C., Czeszczewik, D. & Rowiński, P. 2010. Breeding bird dynamics in a primeval temperate forest over thirty-five years: Variation and stability in the changing world. – Acta Ornithologica 45(2): 209–232. DOI: 10.3161/000164510x551354 Search in Google Scholar

Wesolowski, T. & Tomialojc, L. 1986. The breeding ecology of woodpeckers in a temperate primaeval forest – preliminary data. – Acta Ornithologica 22(1): 1–21. Search in Google Scholar

eISSN:
2061-9588
Język:
Angielski
Częstotliwość wydawania:
2 razy w roku
Dziedziny czasopisma:
Life Sciences, other