Automatic bird song and syllable segmentation with an open-source deep-learning object detection method – a case study in the Collared Flycatcher (Ficedula albicollis)
, , , , , oraz
16 gru 2019
O artykule
Data publikacji: 16 gru 2019
Zakres stron: 59 - 66
Otrzymano: 12 wrz 2019
Przyjęty: 21 paź 2019
DOI: https://doi.org/10.2478/orhu-2019-0015
Słowa kluczowe
© 2019 Sándor Zsebők et al., published by Sciendo
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.
Zsebők, Sándor
Behavioural Ecology Group, Department of Systematic Zoology and Ecology, Eötvös Loránd UniversityBudapest, Hungary
Nagy-Egri, Máté Ferenc
Wigner Research Centre for PhysicsBudapest, Hungary
Barnaföldi, Gergely Gábor
Wigner Research Centre for PhysicsBudapest, Hungary
Laczi, Miklós
Behavioural Ecology Group, Department of Systematic Zoology and Ecology, Eötvös Loránd UniversityBudapest, Hungary
Orosztony, Hungary
Nagy, Gergely
Behavioural Ecology Group, Department of Systematic Zoology and Ecology, Eötvös Loránd UniversityBudapest, Hungary
Vaskuti, Éva
Behavioural Ecology Group, Department of Systematic Zoology and Ecology, Eötvös Loránd UniversityBudapest, Hungary
Garamszegi, László Zsolt
Behavioural Ecology Group, Department of Systematic Zoology and Ecology, Eötvös Loránd UniversityBudapest, Hungary
MTA-ELTE, Theoretical Biology and Evolutionary Ecology Research Group, Department of Plant Systematics, Ecology and Theoretical Biology, Eötvös Loránd UniversityBudapest, Hungary
Evolutionary Ecology Group, Centre for Ecological Research, Institute of Ecology and BotanyHungary