Otwarty dostęp

Critical comparison of INAA and ICP-MS applied in the characterization of purity of TRISO fuel and substrates to its production


Zacytuj

International Atomic Energy Agency. (2010). High temperature gas cooled reactor fuels and materials. Vienna: IAEA. (IAEA-TECDOC-1645). International Atomic Energy Agency 2010 High temperature gas cooled reactor fuels and materials Vienna IAEA. (IAEA-TECDOC-1645) Search in Google Scholar

Quade, R. N., & McMain, A. T. (1975). Hydrogen production with a high-temperature gas-cooled reactor (HTGR). In T. N. Veziroglu (Ed.), Hydrogen energy (pp. 137–154). New York: Plenum Press. QuadeR. N. McMainA. T. 1975 Hydrogen production with a high-temperature gas-cooled reactor (HTGR) In VezirogluT. N. (Ed.), Hydrogen energy 137 154 New York Plenum Press 10.1007/978-1-4684-2607-6_10 Search in Google Scholar

Chao Fang, C., Morris, R., & Li, F. (2017). Safety features of high temperature gas cooled reactor. Sci. Technol. Nucl. Install., 2017, art. ID 9160971. DOI: 10.1155/2017/9160971. Chao FangC. MorrisR. LiF. 2017 Safety features of high temperature gas cooled reactor Sci. Technol. Nucl. Install. 2017 art. ID 9160971. 10.1155/2017/9160971 Open DOISearch in Google Scholar

Verfondern, K., Nabielek, H., & Kendall, J. M. (2007). Coated particle fuel for high temperature gas cooled reactors. Nucl. Eng. Technol., 39, 603–616. DOI: 10.5516/NET.2007.39.5.603. VerfondernK. NabielekH. KendallJ. M. 2007 Coated particle fuel for high temperature gas cooled reactors Nucl. Eng. Technol 39 603 616 10.5516/NET.2007.39.5.603 Open DOISearch in Google Scholar

De Souza, A. L., Cotrim, M. E. B., & Pires, M. A. F. (2013). An overview of spectrometric techniques and sample preparation for the determination of impurities in uranium nuclear fuel grade. Microchem. J., 106, 194–201. DOI: 10.1016/j.microc.2012.06.015. De SouzaA. L. CotrimM. E. B. PiresM. A. F. 2013 An overview of spectrometric techniques and sample preparation for the determination of impurities in uranium nuclear fuel grade Microchem. J. 106 194 201 10.1016/j.microc.2012.06.015 Open DOISearch in Google Scholar

Sadikov, I. I., Rakhimov, A. V., Salimov, M. I., Zinov’ev, V. G., Mukhamedshina, N. M. F., & Tashimova, A. (2009). Neutron activation analysis of pure uranium: Preconcentration of impurity elements. J. Radioanal. Nucl. Chem., 280, 489–493. DOI: 10.1007/s10967-008-7389-y. SadikovI. I. RakhimovA. V. SalimovM. I. Zinov’evV. G. MukhamedshinaN. M. F. TashimovaA. 2009 Neutron activation analysis of pure uranium: Preconcentration of impurity elements J. Radioanal. Nucl. Chem. 280 489 493 10.1007/s10967-008-7389-y Open DOISearch in Google Scholar

Oliveira Junior, O. P., & Sarkis, J. E. S. (2002). Determination of impurities in uranium oxide by inductively coupled plasma mass spectrometry (ICPMS) by the matrix matching method. J. Radioanal. Nucl. Chem., 254, 519–526. DOI: 10.1023/A:1021642122066. Oliveira JuniorO. P. SarkisJ. E. S. 2002 Determination of impurities in uranium oxide by inductively coupled plasma mass spectrometry (ICPMS) by the matrix matching method J. Radioanal. Nucl. Chem. 254 519 526 10.1023/A:1021642122066 Open DOISearch in Google Scholar

Bürger, S., Riciputi, L. R., & Bostick, D. A. (2007). Determination of impurities in uranium matrices by time-of-flight ICP-MS using matrix-matched method. J. Radioanal. Nucl. Chem., 274, 491–505. DOI: 10.1007/s10967-006-6930-0. BürgerS. RiciputiL. R. BostickD. A. 2007 Determination of impurities in uranium matrices by time-of-flight ICP-MS using matrix-matched method J. Radioanal. Nucl. Chem. 274 491 505 10.1007/s10967-006-6930-0 Open DOISearch in Google Scholar

Saha, A., Kumari, K., Deb, S. B., & Saxena, M. K. (2021). Determination of critical trace impurities in “uranium silicide dispersed in aluminium” nuclear fuel by inductively coupled plasma mass spectrometry (ICP-MS). J. Anal. At. Spectrom., 36, 561–569. DOI: 10.1039/D0JA00391C. SahaA. KumariK. DebS. B. SaxenaM. K. 2021 Determination of critical trace impurities in “uranium silicide dispersed in aluminium” nuclear fuel by inductively coupled plasma mass spectrometry (ICP-MS) J. Anal. At. Spectrom. 36 561 569 10.1039/D0JA00391C Open DOISearch in Google Scholar

Bode, P. (1996). Instrumental and organizational aspects of a neutron activation analysis laboratory. Delft, The Netherlands: Delft University of Technology. BodeP. 1996 Instrumental and organizational aspects of a neutron activation analysis laboratory Delft, The Netherlands Delft University of Technology Search in Google Scholar

Greenberg, R. R., Bode, P., & De Nadai Fernandes, E. A. (2011). Neutron activation analysis: A primary method of measurement. Spectroc. Acta Pt. B-Atom. Spectr., 66(3/4), 193–241. DOI: 10.1016/j.sab.2010.12.011. GreenbergR. R. BodeP. De Nadai FernandesE. A. 2011 Neutron activation analysis: A primary method of measurement Spectroc. Acta Pt. B-Atom. Spectr. 66 3/4 193 241 10.1016/j.sab.2010.12.011 Open DOISearch in Google Scholar

Ammann, A. A. (2007). Inductively coupled plasma mass spectrometry (ICP MS): a versatile tool. J. Mass Spectrom., 42, 419–427. DOI: 10.1002/jms.1206. AmmannA. A. 2007 Inductively coupled plasma mass spectrometry (ICP MS): a versatile tool J. Mass Spectrom. 42 419 427 10.1002/jms.1206 17385793 Open DOISearch in Google Scholar

Chajduk, E., Kalbarczyk, P., Dudek, J., Pyszynska, M., Bojanowska-Czajka, A., & Samczyński, Z. (2020). Development of analytical procedures for chemical characterization of substrates for the production of TRISO coated particles as nuclear fuel in high temperature gas-cooled reactors. Sustainability, 12(17), 7221–7234. DOI: 10.3390/su12177221. ChajdukE. KalbarczykP. DudekJ. PyszynskaM. Bojanowska-CzajkaA. SamczyńskiZ. 2020 Development of analytical procedures for chemical characterization of substrates for the production of TRISO coated particles as nuclear fuel in high temperature gas-cooled reactors Sustainability 12 17 7221 7234 10.3390/su12177221 Open DOISearch in Google Scholar

Brykała, M., Rogowski, M., Wawszczak, D., Olczak, T., & Smoliński, T. (2020). Microspheres and pellets of UO2 prepared via ADU by complex sol-gel process and ICHTJ process. Arch. Metall. Mater., 65(4), 1397–1404. DOI: 10.24425/amm.2020.133706. BrykałaM. RogowskiM. WawszczakD. OlczakT. SmolińskiT. 2020 Microspheres and pellets of UO2 prepared via ADU by complex sol-gel process and ICHTJ process Arch. Metall. Mater. 65 4 1397 1404 10.24425/amm.2020.133706 Open DOISearch in Google Scholar

Deptuła, A., Brykała, M., Rogowski, M., Smoliński, T., Olczak, T., Łada, W., Wawszczak, D., Chmielewski, A., & Goretta, K. C. (2014). Fabrication of uranium dioxide microspheres by classic and novel sol-gel processes. MRS Online Proceedings Library, 1683, 64–69. https://doi.org/10.1557/opl.2014.672. DeptułaA. BrykałaM. RogowskiM. SmolińskiT. OlczakT. ŁadaW. WawszczakD. ChmielewskiA. GorettaK. C. 2014 Fabrication of uranium dioxide microspheres by classic and novel sol-gel processes MRS Online Proceedings Library 1683 64 69 https://doi.org/10.1557/opl.2014.672. 10.1557/opl.2014.672 Search in Google Scholar

National Institute of Standards and Technology (2012). Certificate of Analysis. Standard Reference Material 610. Available from https://www-s.nist.gov/srmors/certificates/610.pdf. National Institute of Standards and Technology 2012 Certificate of Analysis. Standard Reference Material 610 Available from https://www-s.nist.gov/srmors/certificates/610.pdf. Search in Google Scholar

eISSN:
1508-5791
Język:
Angielski
Częstotliwość wydawania:
4 razy w roku
Dziedziny czasopisma:
Chemistry, Nuclear Chemistry, Physics, Astronomy and Astrophysics, other