Otwarty dostęp

Natural zeolite as a replacement for resin in the cation exchange process of cesium on post-irradiated nuclear fuel


Zacytuj

ASTM. (2014). Standard practice for the ion exchange separation of uranium and plutonium prior to isotopic analysis. (ASTM C-1411).ASTM2014Standard practice for the ion exchange separation of uranium and plutonium prior to isotopic analysis(ASTM C-1411).Search in Google Scholar

Wiyantoko, B., & Rahman, N. (2017). Measurement of cation exchange capacity (CEC) on natural zeolite by percolation method. AIP Conf. Proc., 1911, 020021. https://doi.org/10.1063/1.5016014.WiyantokoB.RahmanN.2017Measurement of cation exchange capacity (CEC) on natural zeolite by percolation methodAIP Conf. Proc.1911020021https://doi.org/10.1063/1.5016014.10.1063/1.5016014Search in Google Scholar

Ilić, B., & Wettstein, S. (2017). A review of adsorbate and temperature-induced zeolite framework flexibility. Microporous Mesoporous Mat., 239, 221–234. https://doi.org/10.1016/j.micromeso.2016.10.005.IlićB.WettsteinS.2017A review of adsorbate and temperature-induced zeolite framework flexibilityMicroporous Mesoporous Mat.239221234https://doi.org/10.1016/j.micromeso.2016.10.005.10.1016/j.micromeso.2016.10.005Search in Google Scholar

Kong, M., Liu, Z., Vogt, T., & Lee, Y. (2016). Chabazite structures with Li, Na, Ag, K, NH4, Rb and Cs as extra-framework cations. Microporous Mesoporous Mat., 221, 253–263. https://doi.org/10.1016/j.micromeso.2015.09.031.KongM.LiuZ.VogtT.LeeY.2016Chabazite structures with Li, Na, Ag, K, NH4, Rb and Cs as extra-framework cationsMicroporous Mesoporous Mat.221253263https://doi.org/10.1016/j.micromeso.2015.09.031.10.1016/j.micromeso.2015.09.031Search in Google Scholar

Sing, D. N., & Kolay, P. K. (2002). Simulation of ash-water interaction and its influence on ash characteristics. Prog. Energy Cumbust. Sci., 28, 267–299.SingD. N.KolayP. K.2002Simulation of ash-water interaction and its influence on ash characteristicsProg. Energy Cumbust. Sci.2826729910.1016/S0360-1285(01)00018-1Search in Google Scholar

Dyer, A., Harjula, R., Newton, J., & Pilinger, M. (2010). Synthesis and characterisation of mesoporous silica phases containing heteroatoms, and their cation exchange properties. Part 5: Cation exchange isotherms, and the measurement of radioisotope distribution coefficients, for an MCM-22 phase containing aluminium. Microporous Mesoporous Mat., 135(1/3), 21–29. https://doi.org/10.1016/j.micromeso.2010.06.006.DyerA.HarjulaR.NewtonJ.PilingerM.2010Synthesis and characterisation of mesoporous silica phases containing heteroatoms, and their cation exchange properties. Part 5: Cation exchange isotherms, and the measurement of radioisotope distribution coefficients, for an MCM-22 phase containing aluminiumMicroporous Mesoporous Mat.1351/32129https://doi.org/10.1016/j.micromeso.2010.06.006.10.1016/j.micromeso.2010.06.006Search in Google Scholar

Pepe, F., de Gennaro, B., Aprea, P., & Caputo, D. (2013). Natural zeolites for heavy metals removal from aqueous solutions: Modeling of the fixed bed Ba2+/Na+ ion-exchange process using a mixed phillipsite/chabazite-rich tuff. J. Chem. Eng., 219, 37–42. https://doi.org/10.1016/j.cej.2012.12.075.PepeF.de GennaroB.ApreaP.CaputoD.2013Natural zeolites for heavy metals removal from aqueous solutions: Modeling of the fixed bed Ba2+/Na+ ion-exchange process using a mixed phillipsite/chabazite-rich tuffJ. Chem. Eng2193742https://doi.org/10.1016/j.cej.2012.12.075.10.1016/j.cej.2012.12.075Search in Google Scholar

Ginting, A. Br., & Anggraini, D. (2012). The effect of zeolite addition on the of 137Cs in irradiated U3Si2-Al fuel element plate. Journal Teknol. Bahan Nuklir, 7(2), 123–135.GintingA. Br.AnggrainiD.2012The effect of zeolite addition on the of 137Cs in irradiated U3Si2-Al fuel element plateJournal Teknol. Bahan Nuklir72123135Search in Google Scholar

Wang, S., & Peng, Y. (2010). Natural zeolites as effective adsorbents in water and wastewater treatment. Chem. Eng. J., 156, 11–24. https://doi.org/10.1016/j.cej.2009.10.029.WangS.PengY.2010Natural zeolites as effective adsorbents in water and wastewater treatmentChem. Eng. J.1561124https://doi.org/10.1016/j.cej.2009.10.029.10.1016/j.cej.2009.10.029Search in Google Scholar

Estiaty, L. M. (2010). Engineering of zeolite mineral with wet impregnation inhibitor metal method as raw material of antiseptic by continous flow method. Jurnal Zeolit Indonesia, 9(2), 6–70. (in Indonesian).EstiatyL. M.2010Engineering of zeolite mineral with wet impregnation inhibitor metal method as raw material of antiseptic by continous flow methodJurnal Zeolit Indonesia92670(in Indonesian).Search in Google Scholar

Johan, E., Yamada, T., Wazingwa Munthali, M., Kabwadza-Corner, P., Aono, H., & Matsue, N. (2015). Natural zeolites as potential materials for decontamination of radioactive cesium. Procedia Environ. Sci., 28, 52–56.JohanE.YamadaT.Wazingwa MunthaliM.Kabwadza-CornerP.AonoH.MatsueN.2015Natural zeolites as potential materials for decontamination of radioactive cesiumProcedia Environ. Sci.28525610.1016/j.proenv.2015.07.008Search in Google Scholar

Zhang, J., Singh, R., & Webley, P. A. (2008). Alkali and alkaline-earth cation exchanged chabazite zeolites for adsorption based CO2 capture. Microporous Mesoporous Mat., 111(1/3), 478–487. DOI:10.1016/j.micromeso.2007.08.022.ZhangJ.SinghR.WebleyP. A.2008Alkali and alkaline-earth cation exchanged chabazite zeolites for adsorption based CO2 captureMicroporous Mesoporous Mat1111/347848710.1016/j.micromeso.2007.08.022Open DOISearch in Google Scholar

Borai, E. H., Harjula, R., Malinen, L., & Paajanen, A. (2009). Efficient removal of cesium from low-level radioactive liquid waste using natural and impregnated zeolite minerals. J. Hazard. Mater., 172(1), 416–422. https://doi.org/10.1016/j.jhazmat.2009.07.033.BoraiE. H.HarjulaR.MalinenL.PaajanenA.2009Efficient removal of cesium from low-level radioactive liquid waste using natural and impregnated zeolite mineralsJ. Hazard. Mater1721416422https://doi.org/10.1016/j.jhazmat.2009.07.033.10.1016/j.jhazmat.2009.07.03319656622Search in Google Scholar

Vipin, A. K., Ling, S., & Fugetsu, B. (2016). Removal of Cs+ and Sr2+ from water using MWCNT reinforced Zeolite-A beads. Microporous Mesoporous Mat., 224, 84–88. https://doi.org/10.1016/j.micromeso.2015.11.024.VipinA. K.LingS.FugetsuB.2016Removal of Cs+ and Sr2+ from water using MWCNT reinforced Zeolite-A beadsMicroporous Mesoporous Mat.2248488https://doi.org/10.1016/j.micromeso.2015.11.024.10.1016/j.micromeso.2015.11.024Search in Google Scholar

Cortés-Martínez, R., Olguín, M. T., & Solache-Ríos, M. (2010). Cesium sorption by clinoptilolite-rich tuffs in batch and fixed-bed systems. Desalination, 258(1/3), 164–170. https://doi.org/10.1016/j.desal.2010.03.019.Cortés-MartínezR.OlguínM. T.Solache-RíosM.2010Cesium sorption by clinoptilolite-rich tuffs in batch and fixed-bed systemsDesalination2581/3164170https://doi.org/10.1016/j.desal.2010.03.019.10.1016/j.desal.2010.03.019Search in Google Scholar

El-Kamash, A. M. (2008). Evaluation of zeolite for the sorptive removal of Cs+ and Sr2+ ions from aqueous solutions using batch and fixed bed column operations. J. Hazard. Mater., 151(2/3), 432–445. https://doi.org/10.1016/j.jhazmat.2007.06.009.El-KamashA. M.2008Evaluation of zeolite for the sorptive removal of Cs+ and Sr2+ ions from aqueous solutions using batch and fixed bed column operationsJ. Hazard. Mater1512/3432445https://doi.org/10.1016/j.jhazmat.2007.06.009.10.1016/j.jhazmat.2007.06.00917644247Search in Google Scholar

Chegrouche, S., Mellah, A., & Barkat, M. (2009). Removal of strontium from aqueous solutions by adsorption onto activated carbon: kinetic and thermodynamic studies. Desalination, 235(1/3), 306–318. DOI:10.1016/j.desal.2008.01.018.ChegroucheS.MellahA.BarkatM.2009Removal of strontium from aqueous solutions by adsorption onto activated carbon: kinetic and thermodynamic studiesDesalination2351/330631810.1016/j.desal.2008.01.018Open DOISearch in Google Scholar

Abdel Moamen, O. A., Ismail, I. M., Abdelmonem, N., & Abdel Rahman, R. O. (2015). Factorial design analysis for optimizing the removal of cesium and strontium ions on synthetic nano-sized zeolite. Journal Taiwan Inst. Chem. Eng., 55, 133–144. https://doi.org/10.1016/j.jtice.2015.04.007.Abdel MoamenO. A.IsmailI. M.AbdelmonemN.Abdel RahmanR. O.2015Factorial design analysis for optimizing the removal of cesium and strontium ions on synthetic nano-sized zeoliteJournal Taiwan Inst. Chem. Eng55133144https://doi.org/10.1016/j.jtice.2015.04.007.10.1016/j.jtice.2015.04.007Search in Google Scholar

Inglezakis, V. J. (2005). The concept of “capacity” in zeolite ion-exchange systems. J. Colloid Interface Sci., 281, 68–79. DOI:10.1016/j.jcis.2004.08.082.InglezakisV. J.2005The concept of “capacity” in zeolite ion-exchange systemsJ. Colloid Interface Sci.281687910.1016/j.jcis.2004.08.08215567382Open DOISearch in Google Scholar

Sukor, A., Azira, A. Z. A., & Husni, M. H. A. (2017). Determination of cation exchange capacity of natural zeolite: A revisit. Malaysian Journal of Soil Science, 21, 105–112. http://www.msss.com.my/.SukorA.AziraA. Z. A.HusniM. H. A.2017Determination of cation exchange capacity of natural zeolite: A revisitMalaysian Journal of Soil Science21105112http://www.msss.com.my/.Search in Google Scholar

Siti, A., Anggraini, D., Nampira, Y., Rosika, R., Noviarti, N., & Nugroho, A. (2003). Selectivity of Lampung zeolite towards matrices cations generated from uranium fission. Jurnal Zeolit Indonesia, 2(1), 9–14. (in Indonesian).SitiA.AnggrainiD.NampiraY.RosikaR.NoviartiN.NugrohoA.2003Selectivity of Lampung zeolite towards matrices cations generated from uranium fissionJurnal Zeolit Indonesia21914(in Indonesian).Search in Google Scholar

eISSN:
0029-5922
Język:
Angielski
Częstotliwość wydawania:
4 razy w roku
Dziedziny czasopisma:
Chemistry, Nuclear Chemistry, Physics, Astronomy and Astrophysics, other