1. bookTom 65 (2020): Zeszyt 3 (September 2020)
Informacje o czasopiśmie
License
Format
Czasopismo
eISSN
1508-5791
Pierwsze wydanie
25 Mar 2014
Częstotliwość wydawania
4 razy w roku
Języki
Angielski
Otwarty dostęp

Source term estimation for the MARIA research reactor and model of atmospheric dispersion of radionuclides with dry deposition

Data publikacji: 06 Jul 2020
Tom & Zeszyt: Tom 65 (2020) - Zeszyt 3 (September 2020)
Zakres stron: 173 - 179
Otrzymano: 07 Nov 2019
Przyjęty: 17 Jan 2020
Informacje o czasopiśmie
License
Format
Czasopismo
eISSN
1508-5791
Pierwsze wydanie
25 Mar 2014
Częstotliwość wydawania
4 razy w roku
Języki
Angielski

1. Andrzejewski, K. J., Kulikowska, T. A., & Marcinkowska, Z. E. (2008). Computations of fuel management in MARIA reactor with highly poisoned beryllium matrix. Nukleonika, 53(2), 173–179.Search in Google Scholar

2. International Atomic Energy Agency. (2008). Derivation of the source term and analysis of the radiological consequences of research reactor accidents. Vienna: IAEA. (Safety Reports Series No. 53).Search in Google Scholar

3. Khaled, S. M. E., Soad, M. E., & Maha, S. E. (2014). Modeling of atmospheric dispersion with dry deposition: an application on a research reactor. Revista Brasileira de Meteorologia, 29(3), 331–337. DOI: 10.1590/0102-778620130654.10.1590/0102-778620130654Search in Google Scholar

4. Shamussudin, S. D., Omar, N., & Koh, M. H. (2017). Development of radionuclide dispersion modelling software based on Gaussian plume model. Matematika, 33(2), 149–157.10.11113/matematika.v33.n2.1003Search in Google Scholar

5. Lutman, E. R., Jones, S. R., Hill, R. A., McDonald, P., & Lambers, B. (2004). Comparison between the predictions of Gaussian plume model and Lagrangian particle dispersion model for annual average calculations of long-range dispersion of radionuclides. J. Environ. Radioact., 75(3), 339–355. DOI: 10.1016/j. jenvrad.2003.11.013.Search in Google Scholar

6. Oura, M., Ohba, R., Robins, A., & Kato, S. (2018). Validation study for an atmospheric dispersion model, using effective source heights determined from wind tunnel experiments in nuclear safety analysis. Atmosphere, (9)3, 111–130. DOI: 10.3390/atmos9030111.10.3390/atmos9030111Search in Google Scholar

7. Mehboob, K., Xinrong, C., & Ali, M. (2012). Comprehensive review of source term analysis and experimental programs. Research Journal of Applied Sciences, Engineering and Technology, 4(17), 3168–3181.Search in Google Scholar

8. Pytel, K., Borek-Kruszewska, E., Czarnecki, M., Dorosz, M., Frydrysiak, A., Gołąb, A., Idzikowski, J., Jaroszewicz, J., Jezierski, K., Krzysztoszek, G., Kurdej, J., Lechniak, J., Lipka, M., Marcinkowska, Z., Migdal, M., Nowakowski, P., Owsianko I., Prokopowicz, R., Przybysz, Z., Szaforz, P., Stanaszek, R., Tarchalski, M., Wilczek, E., & Witkowski, P. (2015). Maria research reactor safety report. Otwock-Świerk: National Centre for Nuclear Research. (in Polish).Search in Google Scholar

9. Cacuci, D. G. (2010). Handbook of nuclear engineering. Vol. 1: Nuclear engineering fundamentals. US: Springer.10.1007/978-0-387-98149-9Search in Google Scholar

10. Pytel, K., & Nowicki, K. (1989), Model transportu produktów rozszczepienia i zagrożenia personelu w obiekcie reaktora MARIA w wyniku przepalenia paliwa (Model of transport of fission products and risks to personnel in a MARIA reactor facility due to fuel burnout). Otwock-Świerk: Institute of Atomic Energy. (IEA Internal Report no. 81/R-V/89).Search in Google Scholar

11. Kwiatkowski, T. (2012). Model of radioactive substances diffusion through the safety barriers of a nuclear reactor. Master Thesis, Warsaw University of Technology, Warszawa. Available from http://repo.bg.pw.edu.pl/index.php/pl/r#/info/master/WUT-916fbb2b33154743a379f4c38680d0f6/Search in Google Scholar

12. International Atomic Energy Agency. (2001). Generic models use in assessing the impact of discharges of radioactive substances to the environment. Vienna: IAEA. (Safety Reports Series No. 19).Search in Google Scholar

13. International Atomic Energy Agency. (1986). Atmospheric dispersion models for application in relation to radionuclide releases. Vienna: IAEA. (IAEA-TECDOC-379).Search in Google Scholar

14. Minister of the Environment. (2010). Rozporządzenie Ministra Środowiska z dnia 26 stycznia 2010 r. w sprawie wartości odniesienia dla niektórych substancji w powietrzu (Regulation of the Minister of the Environment on reference values for certain substances in the air). Dz. U., 2010, no. 16, item 87.Search in Google Scholar

15. Sedefian, L., & Bennett, E. (1980). A comparison of turbulence classification schemes. Atmos. Environ., 14(7), 741–750. DOI: 10.1016/0004-6981(80)90128-6.10.1016/0004-6981(80)90128-6Search in Google Scholar

16. Lechniak, J. (2006). Zagrożenie środowiska radioizotopami jodu uwalnianymi z reaktora jądrowego “Maria” (Environmental hazard from iodine radio-isotopes released from the ‘Maria’ nuclear reactor). Unpublished Master Thesis, University of Ecology and Management, Warszawa.Search in Google Scholar

17. Eckerman, K. F., & Ryman, J. C. (1993). External exposure to radionuclides in air, water, and soil. Oak Ridge: Oak Ridge National Laboratory. (Federal Guidance Report No. 12, EPA-402-R-93-081).Search in Google Scholar

18. Council of Ministers. (2005). Rozporządzenie Rady Ministrów z dnia 18 stycznia 2005 r. w sprawie dawek granicznych promieniowania jonizującego (Regulation of 18 January 2005 of the Council of Ministers on ionizing radiation dose limits). Dz. U., 2005, no. 20, item 168.Search in Google Scholar

19. Council of Ministers. (2004). Rozporządzenie Rady Ministrów z dnia 27 kwietnia 2004 r. w sprawie wartości poziomów interwencyjnych dla poszczególnych rodzajów działań interwencyjnych oraz kryteriów odwołania tych działań (Regulation of 27 April 2004 of the Council of Ministers on intervention levels for various intervention measures and criteria for cancelling intervention measures). Dz. U., 2004, no. 98, item 987.Search in Google Scholar

Polecane artykuły z Trend MD

Zaplanuj zdalną konferencję ze Sciendo