Otwarty dostęp

A Review on Fatigue Performance of Concrete Structures Part I: Loading Parameters, Current Prediction Models and Design Approaches


Zacytuj

Aas-Jakobsen K: “Fatigue of concrete beams and columns”. Division of Concrete Structures, Norwegian Inst. of Technology, Trondheim, Norway, 1970. Search in Google Scholar

Hilsdorf H K: “Fatigue strength of concrete under varying flexural stresses”. ACI Journal Proceedings, 1966. Search in Google Scholar

Lee M & Barr B: “An overview of the fatigue behaviour of plain and fibre reinforced concrete”. Cement and Concrete Composites, 26 (4), 2004, pp. 299-305. Search in Google Scholar

Myrtja E, Soudier J, Prat E & Chaouche M: “Fatigue deterioration mechanisms of highstrength grout in compression”. Construction and Building Materials, 270, 2021. Search in Google Scholar

Saucedo L, Rena C Y, Medeiros A, Zhang X & Ruiz G: “A probabilistic fatigue model based on the initial distribution to consider frequency effect in plain and fiber reinforced concrete”. International journal of fatigue, 48, 2013, pp. 308-318. Search in Google Scholar

DNV-OS-J101: “Design of Offshore Wind Turbine Structures”. DNV, 2004. Search in Google Scholar

Wang X & Fang S-j: “Comparison of Fatigue Design Code Requirements for Wind Turbine Foundations”. ACI Special Publication, 348, 2021, pp. 145-158. Search in Google Scholar

Albert W A J: “Uber Treibseile am Harz. Archiv fur Mineralogie, Georgnosie”. Bergbau und Huttenkunde, 10, 1837. (In German). Search in Google Scholar

Wöhler A: “Über die festigkeitsversuche mit eisen und stahl”, Ernst & Korn, 1870. (In German). Search in Google Scholar

Afaghi M, Klausen A & Øverli J A: “A Review on Fatigue Performance of Concrete Structures Part II, Material Parameters and Environmental Factors”. Nordic Concrete Research (NCR) 68, 2023, pp. 127-144. Search in Google Scholar

Arthur P, Earl J C & Hodgkiess T: “Corrosion fatigue in concrete for marine applications”. ACI Special Publication, 75, 1982, pp. 1-24. Search in Google Scholar

Murdock J W: “A critical review of research on fatigue of plain concrete”. University of Illinois. Engineering Experiment Station. Bulletin; no. 475, 1965. Search in Google Scholar

Raithby K & Galloway J: “Effects of moisture condition age, and rate of loading on fatigue of plain concrete”. ACI Special Publication, 41, 1974, pp. 15-35. Search in Google Scholar

Assimacopoulos B M, Warner R F & Ekberg C E: “High speed fatigue tests on small specimens of plain concrete”. Journal of Prestressed Concrete Institute, 4 (2), 1959, pp. 53-70. Search in Google Scholar

AWAD M E-M: “Strength and deformation characteristics of plain concrete subjected to high repeated and sustained loads”. University of Illinois at Urbana-Champaign, USA, 1971. Search in Google Scholar

Sparks P R & Menzies J: “The effect of rate of loading upon the static and fatigue strengths of plain concrete in compression”. Magazine of concrete research, 25 (83), 1973, pp. 73-80. Search in Google Scholar

Holmen J O: “Fatigue of concrete by constant and variable amplitude loading”. ACI Special Publication, 75, 1982, pp. 71-110. Search in Google Scholar

Zhang B, Phillips D & Wu K: “Effects of loading frequency and stress reversal on fatigue life of plain concrete”. Magazine of concrete research, 48 (177), 1996, pp. 361-375. Search in Google Scholar

Oneschkow N: “Influence of loading frequency on the fatigue behaviour of highstrength concrete”. Proceedings of the 9th FIB International PhD Symposium in Civil Engineering. July 22nd to 25th, 2012, pp. 235-240. Search in Google Scholar

Isojeh B, El-Zeghayar M & Vecchio F J: “Concrete damage under fatigue loading in uniaxial compression”. ACI Mater. J, 114 (2), 2017, pp. 225-235. Search in Google Scholar

Bažant Z P & Jirásek M: “Creep and hygrothermal effects in concrete structures”, Springer, Vol. 225, 2018. Search in Google Scholar

Sparks P: “The influence of rate of loading and material variability on the fatigue characteristics of concrete”. ACI Special Publication, 75, 1982, pp. 331-342. Search in Google Scholar

Tepfers R, Görlin J & Samuelsson T: “Concrete Subjected to pulsating load and pulsating deformation of different pulse waveform”. Nordisk betong, 17 (4), 1973. Search in Google Scholar

Oneschkow N: “Fatigue behaviour of high-strength concrete with respect to strain and stiffness”. International Journal of Fatigue, 87, 2016, pp. 38-49. Search in Google Scholar

Hordijk D A: “Tensile and tensile fatigue behaviour of concrete; experiments, modelling and analyses”. Heron, 37 (1), 1992. Search in Google Scholar

Oh B H: “Cumulative damage theory of concrete under variable-amplitude fatigue loadings”. Materials Journal, 88 (1), 1991, pp. 41-48. Search in Google Scholar

Jinawath P: “Cumulative fatigue damage of plain concrete in compression”. University of Leeds, UK 1974. Search in Google Scholar

Tepfers R, Fridén C & Georgsson L: “A study of the applicability to the fatigue of concrete of the Palmgren-Miner partial damage hypothesis”. Magazine of Concrete Research, 29 (100), 1977, pp. 123-130. Search in Google Scholar

Hoff A: “Testing of high strength lightweight aggregate concrete elements”. Nordic Concrete Research, (3), 1984, pp. 63-91. Search in Google Scholar

Baktheer A & Chudoba R: “Experimental and theoretical evidence for the load sequence effect in the compressive fatigue behavior of concrete”. Materials and Structures, 54 (2), 2021. Search in Google Scholar

Hümme J, von der Haar C, Lohaus L & Marx S: “Fatigue behaviour of a normal‐strength concrete–number of cycles to failure and strain development”. Structural Concrete, 17 (4), 2016, pp. 637-645. Search in Google Scholar

Håverstad T & Jensen J: “Fatigue of LWA-Concrete”. SINTEF Report: STF65 A86082, Trondheim, Norway, 1986. Search in Google Scholar

Lenschow R: “Fatigue of concrete structures”. Fatigue of Steel and Concrete Structures, 1982, pp. 15-28. Search in Google Scholar

Hsu T T: “Fatigue of plain concrete”. in ACI Journal Proceedings, 1981. Search in Google Scholar

Aas-Jakobsen K & Lenschow R: “Behavior of reinforced columns subjected to fatigue loading”. ACI in Journal Proceedings, 1973. Search in Google Scholar

Opie F: “Probable fatigue life plain concrete with stress gradient”. ACI Journal Proceedings, 1966. Search in Google Scholar

Cornelissen H: “Fatigue failure of concrete in tension”. HERON, 29 (4), 1984, 1984. Search in Google Scholar

Dillmann R R: “Die Spannungsverteilung in der Biegedruckzone von Stahlbetonquerschnitten bei häufig wiederholter Belastung”. TH Darmstadt, 1981. (In German). Search in Google Scholar

Hsu T T: “Fatigue and microcracking of concrete”. Materiaux et Construction, 17, 1984, pp. 51-54. Search in Google Scholar

Murdock J W & Kesler C E: “Effect of range of stress on fatigue strength of plain concrete beams”. TAM R 130, 1958. Search in Google Scholar

Tepfers R: “Tensile fatigue strength of plain concrete”. ACI in Journal Proceedings, 1979. Search in Google Scholar

Tepfers R: “Fatigue of plain concrete subjected to stress reversals”. ACI Special Publication, 75, 1982, pp. 195-216. Search in Google Scholar

Neville A M: “A general relation for strengths of concrete specimens of different shapes and sizes”. ACI Journal Proceedings, 1966. Search in Google Scholar

Desayi P, Sundara Raja lyengar K & Sanjeeva Reddy T: “Stress-strain characteristics of concrete confined in steel spirals under repeated loading”. Matériaux et Construction, 12, 1979, pp. 375-383. Search in Google Scholar

Shah S P, Fafitis A & Arnold R: “Cyclic loading of spirally reinforced concrete”. Journal of Structural Engineering, 109 (7), 1983, pp. 1695-1710. Search in Google Scholar

Buyukozturk O & Tseng T-M: “Concrete in biaxial cyclic compression”. Journal of Structural Engineering, 110 (3), 1984, pp. 461-476. Search in Google Scholar

Hooi T T: “Effects of passive confinement on fatigue properties of concrete”. Magazine of Concrete Research, 52 (1), 2000, pp. 7-15. Search in Google Scholar

Takhar S, Jordan I & Gamble B: “Fatigue of concrete under lateral confining pressure”. ACI Special Publication, 41, 1974, pp. 59-70. Search in Google Scholar

Traina L A & Jeragh A A: “Fatigue of Plain Concrete Subjected to Biaxial-Cyclical Loading concrete; stresses; tension”. ACI Special Publication, 75, 1982, pp. 217-234. Search in Google Scholar

Song Y-p, Cao W & Meng X-h: “Fatigue properties of plain concrete under triaxial constant-amplitude tension-compression cyclic loading”. Journal of Shanghai University (English Edition), 9, 2005, pp. 127-133. Search in Google Scholar

Wang H & Song Y: “Fatigue capacity of plain concrete under fatigue loading with constant confined stress”. Materials and Structures, 44, 2011, pp. 253-262. Search in Google Scholar

Murdock J W: “The mechanism of fatigue failure in concrete”. University of Illinois at Urbana-Champaign, USA, 1960. Search in Google Scholar

Neville A M: “Properties of concrete”, Vol. 4, Longman London, 1995. Search in Google Scholar

Mallett G P: “Fatigue of reinforced concrete”. STATE-OF-THE-ART REVIEW, HMSO Publications Centre, (2), 1991. Search in Google Scholar

Farhani E: “Influence of rest periods on fatigue strength of concrete tested in water”. Oklahoma State University, USA, 1992. Search in Google Scholar

Viswanathan R: “Pore pressure effects on the mechanical properties of concrete”, Oklahoma State University, USA, 1982. Search in Google Scholar

American Concrete Institute: “Concrete Technology”. ACI Standard, 2017. Search in Google Scholar

Whaley C & Neville A: “Non-elastic deformation of concrete under cyclic compression”. Magazine of Concrete Research, 25 (84), 1973, pp. 145-154. Search in Google Scholar

Zažant Z P & Kim J-K: “Improved prediction model for time-dependent deformations of concrete: Part 5—Cyclic load and cyclic humidity”. Materials and Structures, 25, 1992, pp. 163-169. Search in Google Scholar

Raju N: “Prediction of the fatigue life of plain concrete in compression”. Building Science, 4 (2), 1969, pp. 99-102. Search in Google Scholar

Miner M A: “Cumulative damage in fatigue”. Journal of Applied Mechanics, 1945. Search in Google Scholar

Paris P & Erdogan F: “A critical analysis of crack propagation laws”. Journal of Fluids Engineering, 1963. Search in Google Scholar

Bažant Z P & Kazemi M T: “Size dependence of concrete fracture energy determined by RILEM work-of-fracture method”. International Journal of Fracture, 51, 1991, pp. 121-138. Search in Google Scholar

Baluch M, Qureshy A & Azad A: “Fatigue crack propagation in plain concrete”. Proceedings, Fracture of Concrete and Rock: SEM-RILEM International Conference June 17–19, 1987, Houston, Texas, USA, 1989, Springer. Search in Google Scholar

Kishen J C & Rao P S: “Fracture of cold jointed concrete interfaces”. Engineering Fracture Mechanics, 74 (1-2), 2007, pp. 122-131. Search in Google Scholar

Ortiz M: “A constitutive theory for the inelastic behavior of concrete”. Mechanics of Materials, 4 (1), 1985, pp. 67-93. Search in Google Scholar

Suaris W, Ouyang C & Fernando V M: “Damage model for cyclic loading of concrete”. Journal of Engineering Mechanics, 116 (5), 1990, pp. 1020-1035. Search in Google Scholar

Dattoma V & Giancane S: “Evaluation of energy of fatigue damage into GFRC through digital image correlation and thermography”. Composites Part B: Engineering, 47, 2013, pp. 283-289. Search in Google Scholar

Lei D, Zhang P, He J, Bai P & Zhu F: “Fatigue life prediction method of concrete based on energy dissipation”. Construction and Building Materials, 145, 2017, pp. 419-425. Search in Google Scholar

Dey A, Miyani G & Sil A: “Application of artificial neural network (ANN) for estimating reliable service life of reinforced concrete (RC) structure bookkeeping factors responsible for deterioration mechanism”. Soft Computing, 24, 2020, pp. 2109-2123. Search in Google Scholar

Lee S-C: “Prediction of concrete strength using artificial neural networks”. Engineering Structures, 25 (7), 2003, pp. 849-857. Search in Google Scholar

Jimenez-Martinez M & Alfaro-Ponce M: “Fatigue damage effect approach by artificial neural network”. International Journal of Fatigue, 124, 2019, pp. 42-47. Search in Google Scholar

Isied M & Souliman M: “Fatigue endurance limit model utilizing artificial neural network for asphalt concrete pavements”. Airfield and Highway Pavements 2019: Innovation and Sustainability in Highway and Airfield Pavement Technology, American Society of Civil Engineers Reston, VA, 2019, pp. 42-50. Search in Google Scholar

Abambres M & Lantsoght E O: “ANN-based fatigue strength of concrete under compression”. Materials, 12 (22), 2019. Search in Google Scholar

Zhang L, Wang Z, Wang L, Zhang Z, Chen X & Meng L: “Machine learning-based realtime visible fatigue crack growth detection”. Digital Communications and Networks, 7 (4), 2021, pp. 551-558. Search in Google Scholar

Nederlands Normalisatie-instituut: “Kwaliteitseisen voor het ontwerpen en construeren van tijdelijke bruggen”. 2009. (In Dutch) Search in Google Scholar

DNV-OS-C502: “Offshore Concrete Structures”. Det Norske Veritas: Høvik, Norway, 2010. Search in Google Scholar

Du Béton, Fédération Internationale: “fib model code for concrete structures 2010”, Wiley-vch Verlag Gmbh, 2013. Search in Google Scholar

EN 1992-1-1 Eurocode 2: “Design of concrete structures-Part 1-1: General ruels and rules for buildings. Brussels”. Brussels, Belgium: European Committee for Standardization (CEN), 2004. Search in Google Scholar

Lohaus L, Wefer M & Oneschkow N: “Ermüdungsbemessungsmodell für normal‐, hochund ultrahochfeste Betone”. Beton‐und Stahlbetonbau, 106 (12), 2011, pp. 836-846. (In German). Search in Google Scholar

Baktheer A, Hegger J & Chudoba R: “Enhanced assessment rule for concrete fatigue under compression considering the nonlinear effect of loading sequence”. International Journal of Fatigue, 126, 2019, pp. 130-142. Search in Google Scholar

Alliche A: “Damage model for fatigue loading of concrete”. International Journal of Fatigue, 26 (9), 2004, pp. 915-921. Search in Google Scholar

Schneider S, Hümme J, Marx S & Lohaus L: “Untersuchungen zum Einfluss der Probekörpergröße auf den Ermüdungswiderstand von hochfestem Beton”. Beton‐und Stahlbetonbau, 113 (1), 2018, pp. 58-67. (In German). Search in Google Scholar

Lenschow R: “Beregningsregler for utmatting av betongkonstruksjoner sett fra ulike innfallsvinkler”. SINTEF, Trondheim, Norway, 1986. (In Norwegian) Search in Google Scholar

eISSN:
2545-2819
Język:
Angielski
Częstotliwość wydawania:
2 razy w roku
Dziedziny czasopisma:
Materials Sciences, Materials Processing