Otwarty dostęp

Analysis of Heart Pulse Transmission Parameters Determined from Multi-Channel PPG Signals Acquired by a Wearable Optical Sensor


Zacytuj

Allen, J., Murray, A. (2000). Variability of photoplethysmography peripheral pulse measurements at the ears, thumbs and toes. IEE Proceedings: Science, Measurement and Technology, 147 (6), 403–407. https://doi.org/10.1049/ip-smt:20000846 Search in Google Scholar

Elgendi M. (2021). PPG Signal Analysis: An Introduction Using MATLAB. 1st ed., CRC Press: Abingdon, Oxon, USA, pp. 27-36. ISBN: 978-1-138-04971-0. Search in Google Scholar

Yousef, Q., Reaz, M. B. I., Ali, M. A. M. (2012). The analysis of PPG morphology: Investigating the effects of aging on arterial compliance. Measurement Science Review, 12 (6), 266-271. https://doi.org/10.2478/v10048-012-0036-3 Search in Google Scholar

Blazek, V., Venema, B., Leonhardt, S., Blazek, P. (2018). Customized optoelectronic in-ear sensor approaches for unobtrusive continuous monitoring of cardiorespiratory vital signs. Int. J. Ind. Eng. Manag., 9 (4), 197–203. https://doi.org/10.24867/IJIEM-2018-4-197 Search in Google Scholar

Nitzan, M., Ovadia-Blechman, Z. (2022). Physical and physiological interpretations of the PPG signal. In Photoplethysmography: Technology, Signal Analysis, and Applications, Kyriacou, P. A., Allen, J., Eds., Elsevier: London, United Kingdom, 319–339. ISBN 978-0-12-823374-0. Search in Google Scholar

Béres, S., Holczer, L., Hejjel, L. (2019). On the minimal adequate sampling frequency of the photoplethysmogram for pulse rate monitoring and heart rate variability analysis in mobile and wearable technology. Measurement Science Review, 19 (5), 232-240. https://doi.org/10.2478/msr-2019-0030 Search in Google Scholar

Allen, J. (2007). Photoplethysmography and its application in clinical physiological measurement. Physiol. Meas., 28 (3), R1–R39. https://doi.org/10.1088/0967-3334/28/3/R01 Search in Google Scholar

Celka, P., Charlton, P. H., Farukh, B., Chowienczyk, P., Alastruey, J. (2020). Influence of mental stress on the pulse wave features of photoplethysmograms. Healthc Technol. Lett., 7 (1), 7–12. https://doi.org/10.1049/htl.2019.0001 Search in Google Scholar

Brablik, J. et al. (2022). A Comparison of alternative approaches to MR cardiac triggering: A pilot study at 3 Tesla. IEEE Journal of Biomedical and Heath Informatics, 26 (6), 2594-2605. https://doi.org/10.1109/JBHI.2022.3146707 Search in Google Scholar

Moelker, A., Wielopolski, P. A., Pattynama, P. M. T. (2003). Relationship between magnetic field strength and magnetic-resonance-related acoustic noise levels. Magn. Reson. Mater. Phys. Biol. Med., 16, 52–55. https://doi.org/10.1007/s10334-003-0005-9 Search in Google Scholar

Glowacz, A. (2023). Thermographic fault diagnosis of electrical faults of commutator and induction motors. Engineering Applications of Artificial Intelligence, 121, 105962. https://doi.org/10.1016/j.engappai.2023.105962 Search in Google Scholar

Marques, J. P., Simons F. J., Webb, A. G. (2019). Low-field MRI: An MR physics perspective. Journal of Magnetic Resonance Imaging, 49 (6), 1528-1542. https://doi.org/10.1002/jmri.26637 Search in Google Scholar

Schickhofer, L., Malinen, J., Mihaescu, M. (2019). Compressible flow simulations of voiced speech using rigid vocal tract geometries acquired by MRI. J. Acoust. Soc. Am., 145 (4), 2049-2061. https://doi.org/10.1121/1.5095250 Search in Google Scholar

Fischer, J. et al. (2020). Magnetic resonance imaging of the vocal fold oscillations with sub-millisecond temporal resolution. Magn. Reson. Med., 83 (2), 403-411. https://doi.org/10.1002/mrm.27982 Search in Google Scholar

Přibil, J., Přibilová, A., Frollo, I. (2020). First-step PPG signal analysis for evaluation of stress induced during scanning in the open-air MRI device. Sensors, 20 (12), 3532:1-3532:15. https://doi.org/10.3390/s20123532 Search in Google Scholar

Přibil, J., Přibilová, A., Frollo, I. (2021). Stress level detection and evaluation from phonation and PPG signals recorded in an open-air MRI device. Appl. Sci., 11 (24), 11748:1-11748:20, https://doi.org/10.3390/app112411748 Search in Google Scholar

Liu, M., Po, L. M., Fu, H. (2017). Cuffless blood pressure estimation based on photoplethysmography signal and its second derivative. Int J Comput Theory Eng, 9 (3), 202-206. https://doi.org/10.7763/IJCTE.2017.V9.1138 Search in Google Scholar

Přibil, J., Přibilová, A., Frollo, I. (2022). Experiment with cuffless estimation of arterial blood pressure from the signal sensed by the optical PPG sensor. Eng. Proc., 27 (1), 51:1-51:7. https://doi.org/10.3390/ecsa-9-13220 Search in Google Scholar

Slapničar, G., Luštrek, M., Marinko, M. (2018). Continuous blood pressure estimation from PPG signal. Informatica, 42, 33–42. Search in Google Scholar

Yoon, Y. Z., Yoon, G. W. (2006). Nonconstrained blood pressure measurement by photoplethysmography. J. Opt. Soc. Korea, 10, 91–95. Search in Google Scholar

Kachuee, M., Kiani, M. M., Mohammadzade, H., Shabany, M. (2015). Cuff-less high-accuracy calibration-free blood pressure estimation using pulse transit time. In IEEE International Symposium on Circuits and Systems (ISCAS), 2015, 1006–1009. Search in Google Scholar

Rencher, A. C., Schaalje, G. B. (2008). Linear Models in Statistics, 2nd ed. John Wiley & Sons. ISBN 978-0-471-75498-5. Search in Google Scholar

Mousavi, S. et al. (2019). Blood pressure estimation from appropriate and inappropriate PPG signals using a whole-based method. Biomed. Signal Process. Control, 47, 196–206. https://doi.org/10.1016/j.bspc.2018.08.022 Search in Google Scholar

Teng, X. F., Zhang, Y. T. (2003). Continuous and noninvasive estimation of arterial blood pressure using a photoplethysmographic approach. In Proceedings of the 25th Annual International Conference of the IEEE Engineering in Medicine and Biology, Cancun, Mexico, 17–21 September 2003, pp. 3156-3156. Search in Google Scholar

Zhang, J. M., Wei, P. F; Li, Y. (2008). A LabVIEW based measure system for pulse wave transit time. In 5th International Conference on Information Technology and Applications in Biomedicine, 2008, 477-480. Search in Google Scholar

Cattivelli, F. S., Garudadri, H. (2009). Noinvasive cuffless estimation of blood pressure from pulse arrival time and heart rate with adaptive calibration. In 6th International Workshop on Wearable and Implantable Body Sensor Networks, Berkeley, CA, USA, 3–5 June 2009; 114–119. https://doi.org/10.1109/BSN.2009.35 Search in Google Scholar

Wang, L., Lo, B. P., Yang, G. Z. (2007). Multichannel reflective PPG earpiece sensor with passive motion cancellation. IEEE Transactions on Biomedical Circuits and Systems, 1 (4), 235–241. https://doi.org/10.1109/TBCAS.2007.910900 Search in Google Scholar

Lazazzera, R., Belhaj, Y., Carrault, G. (2019). A new wearable device for blood pressure estimation using photoplethysmogram. Sensors, 19 (11), 2557:1-2557:18. https://doi.org/10.3390/s19112557 Search in Google Scholar

E-Scan Opera. Image Quality and Sequences Manual; Revision 830023522; Esaote S.p.A. Genoa, Italy, 2008. Search in Google Scholar

Padilla, J. et al. (2006). Assessment of relationships between blood pressure, pulse wave velocity and digital volume pulse. In Computers in Cardiology, IEEE, 893–896. Search in Google Scholar

Lee, C. Y., Lee, Z. J. (2012). A novel algorithm applied to classify unbalanced data. Applied Soft Computing, 12, 2481-2485. https://doi.org/10.1016/j.asoc.2012.03.051 Search in Google Scholar

Szaj, W., Wojnarowska, W., Pajdo. B. (2021). First evaluation of the PTN-104 plethysmographic sensor for heart rate measurement. Measurement Science Review, 21 (5), 117-122. https://doi.org/10.2478/msr-2021-0017 Search in Google Scholar

Arduino Nano – Arduino Official Store. Available online: https://store.arduino.cc/products/arduino-nano (accessed on January 21, 2023). Search in Google Scholar

Microlife BP A150 AFIB. Available online: https://www.microlife.com/support/blood-pressure/bp-a150-afib (accessed on December 12, 2022). Search in Google Scholar

Andris, P. et al. (2015). Simplified matching and tuning experimental receive coils for low-field NMR measurements. Measurement, 64, 29-33. https://doi.org/10.1016/j.measurement.2014.12.035 Search in Google Scholar

eISSN:
1335-8871
Język:
Angielski
Częstotliwość wydawania:
6 razy w roku
Dziedziny czasopisma:
Engineering, Electrical Engineering, Control Engineering, Metrology and Testing