Otwarty dostęp

Experimental Validation of a High-Speed Tracked Vehicle Powertrain Simulation Model


Zacytuj

Ryu, H., Bae, D., Choi, J., Shabana, A. A. (2000). A compliant track link model for high‐speed, high‐ mobility tracked vehicles. International Journal for Numerical Methods in Engineering, 48, 1481-1502. https://doi.org/10.1002/1097-0207(20000810)48:10%3C1481::AIDNME959%3E3.0.CO;2-P Search in Google Scholar

Castellazzi, L., Tonoli, A., Amati, N., Galliera, E. (2017). A study on the role of powertrain system dynamics on vehicle driveability. Vehicle System Dynamics, 55 (7), 1012-1028. https://doi.org/10.1080/00423114.2017.1294699 Search in Google Scholar

Wong, J. Y., Preston-Thomas, J. (1986). Parametric analysis of tracked vehicle performance using an advanced computer simulation model. Proceedings of the Institution of Mechanical Engineers, Part D: Transport Engineering, 200 (2), 101-114. https://doi.org/10.1243/PIME_PROC_1986_200_170_02 Search in Google Scholar

Wong, J. Y. (1986). Computer aided analysis of the effects of design parameters on the performance of tracked vehicles. Journal of Terramechanics, 23 (2), 95-124. https://doi.org/10.1016/0022-4898(86)90017-0 Search in Google Scholar

Adegbohun, F., von Jouanne, A., Phillips, B., Agamloh, E., Yokochi, A. (2021). High performance electric vehicle powertrain modeling, simulation and validation. Energies, 14 (5), 1943. https://doi.org/10.3390/en14051493 Search in Google Scholar

Dalsjø, P. (2008). Hybrid electric propulsion for military vehicles - overview and status of the technology. FFI Report 2008/01220, Norwegian Defence Research Establishment (FFI), Kjeller, Norway. ISBN 978-82-464-1394-5. Search in Google Scholar

Dhir, A., Sankar, S. (1995). Assessment of tracked vehicle suspension system using a validated computer simulation model. Journal of Terramechanics, 32 (3), 127-149. https://doi.org/10.1016/0022-4898(95)00012-7 Search in Google Scholar

Yi, K. S., Yi, S.-J. (2005). Real-time simulation of a high speed multibody tracked vehicle. International Journal of Automotive Technology, 6 (4), 351-357. Search in Google Scholar

MATLAB. (2018). version 9.7.0.1190202 (R2019b). The MathWorks Inc., Natick, Massachusetts. Search in Google Scholar

Janarthanan, B., Padmanabhan, C., Sujatha, C. (2012). Longitudinal dynamics of a tracked vehicle: Simulation and experiment. Journal of Terramechanics, 49 (2), 63-72. https://doi.org/10.1016/j.jterra.2011.11.001 Search in Google Scholar

Kiyakli, A. O., Solmaz, H. (2018). Modeling of an electric vehicle with MATLAB/Simulink. International Journal of Automotive Science and Technology, 2 (4), 9-15. https://doi.org/10.30939/ijastech..475477 Search in Google Scholar

Nabaglo, T., Kowal, J., Jurkiewicz, A. (2013). Construction of a parametrized tracked vehicle model and its simulation in MSC.ADAMS program. Journal of Low Frequency Noise, Vibration and Active Control, 32 (1-2), 167-173. https://doi.org/10.1260/0263-0923.32.1-2.167 Search in Google Scholar

Kciuk, S., Mezyk, A. (2010). Modelling of tracked vehicle dynamics. Journal of Kones, 17 (1), 223-232. Search in Google Scholar

Madsen, J., Heyn, T., Negrut, D. (2018). Methods for tracked vehicle system modeling and simulation. Technical Report 2010-01. Search in Google Scholar

Blundell, M., Harty, D. (2004). Introduction. In The Multibody Systems Approach to Vehicle Dynamics. Butterworth-Heinemann, 1-22. ISBN 9780080473529. Search in Google Scholar

Yi, T. (2000). Vehicle dynamic simulations based on flexible and rigid multibody models. In SAE 2000 World Congress. https://doi.org/10.4271/2000-01-0114 Search in Google Scholar

Balamurugan, S., Srinivasan, R. (2017). Tracked vehicle performance evaluation using multi body dynamics. Defence Science Journal, 67 (4), 476-480. https://doi.org/10.14429/dsj.67.11534 Search in Google Scholar

Hryciów, Z., Rybak, P. (2019). Numerical research of the high-speed military vehicle track. AIP Conference Proceedings, 2078 (1), 020029. https://doi.org/10.1063/1.5092032 Search in Google Scholar

Mahalingam, I., Padmanabhan, C. (2021). A novel alternate multibody model for the longitudinal and ride dynamics of a tracked vehicle. Vehicle System Dynamics, 59 (3), 433-457. https://doi.org/10.1080/00423114.2019.1693048 Search in Google Scholar

Taratorkin, I., Derzhanskii, V., Taratorkin, A. (2016). Experimental determination of kinematic and power parameters at the tracked vehicle turning. Procedia Engineering, 150, 1368-1377. https://doi.org/10.1016/j.proeng.2016.07.331 Search in Google Scholar

Zhang, Y., Qiu, M., Liu, X., Li, J., Song, H., Zhai, Y., Hu, H. (2021). Research on characteristics of tracked vehicle steering on slope. Mathematical Problems in Engineering, 2021, 3592902. https://doi.org/10.1155/2021/3592902 Search in Google Scholar

Ogorkiewicz, R. (1991). Technology of Tanks. Jane’s Information Group, ISBN 978-0710605955. Search in Google Scholar

Muždeka, S. (2012). Osnovi borbenih vozila: udžbenik. Beograd, Serbia: Medija centar Odbrana, ISBN 9788633503693. (in Serbian) Search in Google Scholar

Ponorac, L., Grkić, A., Muždeka, S. (2021). Hybrid power trains for high-speed tracked vehicles. Mobility and Vehicle Mechanics, 47 (3), 35-48. https://doi.org/10.24874/mvm.2021.47.03.04 Search in Google Scholar

Muždeka, S., Perić, S. (2012). Osnovi borbenih vozila: praktikum za vežbe. Beograd, Serbia: Medija centar Odbrana, ISBN 9788633503761. (in Serbian) Search in Google Scholar

Guo, T., Guo, J., Huang, B., Peng, H. (2019). Power consumption of tracked and wheeled small mobile robots on deformable terrains-model and experimental validation. Mechanism and Machine Theory, 133, 347-364. https://doi.org/10.1016/j.mechmachtheory.2018.12.00 Search in Google Scholar

Stojkovic, V., Mikulic, D. (2002). The impact of a fixed kinematic turning radius of a tracked vehicle on the engine power required in a turn. Strojniski Vestnik - Journal of Mechanical Engineering, 48, 459-466. Search in Google Scholar

Vesic, M., Muzdeka, S. (2007). Analysis of influence of turning system kinematic scheme on turning power balance for high speed tracked vehicles. Vojnotehnicki Glasnik, 55 (2), 149-168. https://doi.org/10.5937/vojtehg0702149V Search in Google Scholar

Jimenez-Espadafor, F. J., Becerra Villanueva, J. A., Palomo Guerrero, D., Torres García, M., Carvajal Trujillo, E., Fernández Vacas, F. (2014). Measurement and analysis of instantaneous torque and angular velocity variations of a low speed two stroke diesel engine. Mechanical Systems and Signal Processing, 49 (1), 135-153. https://doi.org/10.1016/j.ymssp.2014.04.016 Search in Google Scholar

Chen, C., Ma, T., Jin, H., Wu, Y., Hou, Z., Li, F. (2020). Torque and rotational speed sensor based on resistance and capacitive grating for rotational shaft of mechanical systems. Mechanical Systems and Signal Processing, 142, 106737. https://doi.org/10.1016/j.ymssp.2020.106737 Search in Google Scholar

Ponorac L., Blagojević, I., Grkić, A. (2022). Analysis of powertrain’s workload during the turning process of a high-speed tracked vehicle. IOP Conference Series: Materials Science and Engineering, 1271, 12003. https://doi.org/10.1088/1757-899X/1271/1/012003 Search in Google Scholar

eISSN:
1335-8871
Język:
Angielski
Częstotliwość wydawania:
6 razy w roku
Dziedziny czasopisma:
Engineering, Electrical Engineering, Control Engineering, Metrology and Testing