1. bookTom 22 (2022): Zeszyt 6 (December 2022)
Informacje o czasopiśmie
License
Format
Czasopismo
eISSN
1335-8871
Pierwsze wydanie
07 Mar 2008
Częstotliwość wydawania
6 razy w roku
Języki
Angielski
Otwarty dostęp

Research on Skeleton Data Compensation of Gymnastics based on Dynamic and Static Two-dimensional Regression using Kinect

Data publikacji: 13 Oct 2022
Tom & Zeszyt: Tom 22 (2022) - Zeszyt 6 (December 2022)
Zakres stron: 283 - 292
Otrzymano: 12 Dec 2021
Przyjęty: 30 May 2022
Informacje o czasopiśmie
License
Format
Czasopismo
eISSN
1335-8871
Pierwsze wydanie
07 Mar 2008
Częstotliwość wydawania
6 razy w roku
Języki
Angielski

[1] Hu, X., Yang, Z.W., Liu, X.P. (2016). A real-time algorithm of virtual animation character driving based on Kinect. Journal of Hefei University of Technology, 39 (6), 756-760. (in Chinese) http://dx.chinadoi.cn/10.3969/j.issn.1003-5060.2016.06.008 Search in Google Scholar

[2] Han, L., Zhang, M.C. (2017). Research on the teaching design and experiment of sports micro course based on the fusion of motion capture technology. Journal of Liaoning Normal University (Natural Science Edition), 40 (2), 199-206. (in Chinese) https://oversea.cnki.net/kcms/detail/detail.aspx?dbcode=CJFD&filename=LNSZ201702010&dbname=CJFDLAST2017 Search in Google Scholar

[3] Eltoukhy, M., Kuenze, C., Oh, J., Wooten, S., Signorile, J. (2017). Kinect-based assessment of lower limb kinematics and dynamic postural control during the star excursion balance test. Gait & Posture, 58, 421-427. https://doi.org/10.1016/j.gaitpost.2017.09.01028910654 Search in Google Scholar

[4] Yang, W.L., Li, X.R., Xia, B. (2018). System of swing-arm therapy auxiliary training based on unity 3D and Kinect. Modern Computer, (20), 79-84. (in Chinese) http://www.cnki.com.cn/Article/CJFDTotal-XDJS201820018.htm Search in Google Scholar

[5] Xing, M.M., Wei, G.H., Liu, J., Zhang, J.Z., Yang, F., Hui, C. (2020). A review on multi-modal human motion representation recognition and its application in orthopedic rehabilitation training. Journal of Biomedical Engineering, 37 (1), 174-178, 184. (in Chinese) http://dx.doi.org/10.7507/1001-5515.201906053 Search in Google Scholar

[6] Gray, A.D., Willis, B.W., Skubic, M. (2017). Development and validation of a portable and inexpensive tool to measure the drop vertical Jump using the Microsoft Kinect V2. Sports Health: A Multidisciplinary Approach, 9 (6), 537-544. https://doi.org/10.1177%2F194173811772632310.1177/1941738117726323566511428846505 Search in Google Scholar

[7] Gambi, E., Agostinelli, A., Belli, A., Burattini, L., Cippitelli, E., Fioretti, S., Pierleoni, P., Ricciuti, M., Sbrollini, A., Spinsante, S. (2017). Heart rate detection using Microsoft Kinect: Validation and comparison to wearable devices. Sensors, 17 (8), 1776. https://doi.org/10.3390/s17081776557947728767091 Search in Google Scholar

[8] Eltoukhy, M., Oh, J., Kuenze, C., Signorile, J. (2017). Improved Kinect-based spatiotemporal and kinematic treadmill gait assessment. Gait & Posture, 51, 77-83. https://doi.org/10.1016/j.gaitpost.2016.10.00127721202 Search in Google Scholar

[9] Chang, X.J., Ma, Z.G., Li, M., Hauptmann, A.G. (2017). Feature interaction augmented sparse learning for fast Kinect motion detection. IEEE Transactions on Image Processing, 26 (8), 3911-3920. https://doi.org/10.1109/TIP.2017.270850628574355 Search in Google Scholar

[10] Yang, Y.H., Xu, W., Zhang, H., Zhang, J.P., Xu, M.L. (2014). The application of KINECT motion sensing technology in game-oriented study. International Journal of Emerging Technologies in Learning, 9 (2). https://doi.org/10.3991/ijet.v9i2.3282 Search in Google Scholar

[11] Wu, X., Zhang, Y., Shen, Y., Yan, X. (2013). National dance 3D digitizing protection method based on motion capture technology. Computer and Modernization, (1), 112-114, 118. (in Chinese) http://dx.chinadoi.cn/10.3969/j.issn.1006-2475.2013.01.032 Search in Google Scholar

[12] Kataoka, H., Satoh, Y., Aoki, Y., Oikawa, S., Matsui, Y. (2018). Temporal and fine-grained pedestrian action recognition on driving recorder database. Sensors, 18 (2), 627. https://doi.org/10.3390/s18020627585509229461473 Search in Google Scholar

[13] Bhateja, A., Shrivastav, A., Chaudhary, H., Lall, B., Kalra, P.K. (2021). Depth analysis of Kinect v2 sensor in different mediums. Multimedia Tools and Applications, 1-26. https://doi.org/10.1007/s11042-021-11392-z Search in Google Scholar

[14] Antico, M., Balletti, N., Laudato, G., Lazich, A., Notarantonio, M., Oliveto, R., Ricciardi, S., Scalabrino, S., Simeone, J. (2021). Postural control assessment via Microsoft Azure Kinect DK: An evaluation study. Computer Methods and Programs in Biomedicine, 209, 106324. https://doi.org/10.1016/j.cmpb.2021.10632434375852 Search in Google Scholar

[15] Kean, S., Hall, J.C., Perry, P. (2011). Microsoft’s Kinect SDK. In Meet the Kinect. Berkeley, CA: Apress, 151-173. https://doi.org/10.1007/978-1-4302-3889-8_8 Search in Google Scholar

[16] Rahman, M. (2017). Beginning Microsoft Kinect for Windows SDK 2.0: Motion and Depth Sensing for Natural User Interfaces. Berkeley, CA: Apress. https://doi.org/10.1007/978-1-4842-2316-1 Search in Google Scholar

[17] Gabbasov, B., Danilov, I., Afanasyev, I., Magid, E. (2015). Toward a human-like biped robot gait: Biomechanical analysis of human locomotion recorded by Kinect-based Motion Capture system. In 2015 10th International Symposium on Mechatronics and its Applications (ISMA). IEEE. https://doi.org/10.1109/ISMA.2015.7373477 Search in Google Scholar

[18] iPi Soft LLC. (2012). iPi Motion Capture™ Version 2.0. Search in Google Scholar

[19] Microsoft. (2022). Azure Kinect DK. https://azure.microsoft.com/en-us/services/kinect-dk/ Search in Google Scholar

[20] Dehbandi, B., Barachant, A., Smeragliuolo, A.H., Long, J.D., Bumanlag, S.J., He, V., Lampe, A., Putrino, D. (2017). Using data from the Microsoft Kinect 2 to determine postural stability in healthy subjects: A feasibility trial. PloS One, 12 (2), 0170890. https://doi.org/10.1371/journal.pone.0170890530880128196139 Search in Google Scholar

[21] Zulkarnain, R.F., Kim, G.Y., Adikrishna, A., Hong, H.P., Kim, Y.J., Jeon, I.H. (2017). Digital data acquisition of shoulder range of motion and arm motion smoothness using Kinect v2. Journal of Shoulder and Elbow Surgery, 26 (5), 895-901. https://doi.org/10.1016/j.jse.2016.10.02628131678 Search in Google Scholar

[22] Amini, A., Banitsas, K. (2019). An improved technique for increasing the accuracy of joint-to-ground distance tracking in Kinect V2 for foot-off and foot contact detection. Journal of Medical Engineering & Technology, 43 (1), 8-18. https://doi.org/10.1080/03091902.2019.159576230983456 Search in Google Scholar

[23] Mortazavi, F., Nadian-Ghomsheh, A. (2018). Stability of Kinect for range of motion analysis in static stretching exercises. PloS One, 13 (7), 0200992. https://doi.org/10.1371/journal.pone.0200992605763030040848 Search in Google Scholar

[24] Seo, N.J., Fathi, M.F., Hur, P., Crocher, V. (2016). Modifying Kinect placement to improve upper limb joint angle measurement accuracy. Journal of Hand Therapy, 29 (4), 465-473. https://doi.org/10.1016/j.jht.2016.06.010670186527769844 Search in Google Scholar

[25] Tölgyessy, M., Dekan, M., Chovanec, Ľ., Hubinský, P. (2021). Evaluation of the Azure Kinect and its comparison to Kinect V1 and Kinect V2. Sensors, 21 (2), 413. https://doi.org/10.3390/s21020413782724533430149 Search in Google Scholar

[26] Tölgyessy, M., Dekan, M., Chovanec, Ľ. (2021). Skeleton tracking accuracy and precision evaluation of Kinect V1, Kinect V2, and the Azure Kinect. Applied Sciences, 11 (12), 5756. https://doi.org/10.3390/app11125756 Search in Google Scholar

[27] Sharma, P., Anand, R.S. (2020). Depth data and fusion of feature descriptors for static gesture recognition. IET Image Processing, 14 (5), 909-920. https://doi.org/10.1049/iet-ipr.2019.0230 Search in Google Scholar

[28] Simonsen, D., Popovic, M.B., Spaich, E.G., Andersen, O.K. (2017). Design and test of a Microsoft Kinect-based system for delivering adaptive visual feedback to stroke patients during training of upper limb movement. Medical & Biological Engineering & Computing, 55 (11), 1927-1935. https://doi.org/10.1007/s11517-017-1640-z28343334 Search in Google Scholar

[29] Hsu, S.C., Huang, J.Y., Kao, W.C., Huang, C.L. (2015). Human body motion parameters capturing using Kinect. Machine Vision and Applications, 26 (7), 919-932. https://doi.org/10.1007/s00138-015-0710-1 Search in Google Scholar

[30] Hazra, S., Pratap, A.A., Tripathy, D., Nandy, A. (2021). Novel data fusion strategy for human gait analysis using multiple Kinect sensors. Biomedical Signal Processing and Control, 67, 102512. https://doi.org/10.1016/j.bspc.2021.102512 Search in Google Scholar

[31] Shani, G., Shapiro, A., Oded, G., Dima, K., Melzer, I. (2017). Validity of the Microsoft Kinect system in assessment of compensatory stepping behavior during standing and treadmill walking. European Review of Aging and Physical Activity, 14, 4. https://doi.org/10.1186/s11556-017-0172-8533995728286578 Search in Google Scholar

[32] Guess, T.M., Razu, S., Jahandar, A., Skubic, M., Huo, Z.Y. (2017). Comparison of 3D joint angles measured with the Kinect 2.0 skeletal tracker versus a marker-based motion capture system. Journal of Applied Biomechanics, 33 (2), 176-181. https://doi.org/10.1123/jab.2016-010727918704 Search in Google Scholar

[33] Chakraborty, S., Nandy, A., Yamaguchi, T., Bonnet, V., Venture, G. (2020). Accuracy of image data stream of a markerless motion capture system in determining the local dynamic stability and joint kinematics of human gait. Journal of Biomechanics, 104, 109718. https://doi.org/10.1016/j.jbiomech.2020.10971832151378 Search in Google Scholar

[34] Palmieri, P., Melchiorre, M., Scimmi, L.S., Pastorelli, S., Mauro, S. (2020). Human arm motion tracking by Kinect sensor using Kalman filter for collaborative robotics. In Advances in Italian Mechanism Science: Proceedings of the 3rd International Conference of IFToMM ITALY. Springer, 326-334. https://doi.org/10.1007/978-3-030-55807-9_37 Search in Google Scholar

[35] Li, H., Wen, X., Guo, H., Yu, M. (2018). Research into Kinect/inertial measurement units based on indoor robots. Sensors, 18 (3), 839. https://doi.org/10.3390/s18030839587738029534513 Search in Google Scholar

[36] Li, L.F., Zou, B., Zhou, G.L., Wang, C., He, J.F. (2018). Repair and error compensation method for depth image based on optimization estimation. Journal of Applied Optics, 39 (1), 45-50. (in Chinese) http://www.yygx.net/en/article/doi/10.5768/JAO201839.0101008 Search in Google Scholar

[37] Abbasi, J., Salarieh, H., Alasty, A. (2021). A motion capture algorithm based on inertia-Kinect sensors for lower body elements and step length estimation. Biomedical Signal Processing and Control, 64, 102290. https://doi.org/10.1016/j.bspc.2020.102290 Search in Google Scholar

[38] Ryselis, K., Petkus, T., Blažauskas, T., Maskeliunas, R., Damaševičius, R. (2020). Multiple Kinect based system to monitor and analyze key performance indicators of physical training. Human-centric Computing and Information Sciences, 10, 51. https://doi.org/10.1186/s13673-020-00256-4 Search in Google Scholar

[39] Lyu, C., Shen, Y., Li, J. (2016). Depth map inpainting method based on Kinect sensor. Journal of Jilin University (Engineering and Technology Edition), 46 (5), 1697-1703. https://doi.org/10.13229/j.cnki.jdxbgxb201605046 Search in Google Scholar

[40] Xie, X.Q., He, Y.Q., Feng, Y.W. (2020). Research on the Azure Kinect DK deep sensor error analysis and correction method. China Plant Engineering, (16), 24-25. (in Chinese) https://doc.taixueshu.com/journal/20201735zgsbgc.html Search in Google Scholar

[41] Li, Z.L., Zhou, K., Mu, Q., Li, H.A. (2019). TOF camera real-time high precision depth error compensation method. Infrared and Laser Engineering, 48 (12), 263-272. (in Chinese) https://doc.taixueshu.com/journal/20201735zgsbgc.html Search in Google Scholar

[42] Shotton, J., Fitzgibbon, A., Cook, M., Sharp, T., Finocchio, M., Moore, R., Kipman, A., Blake, A. (2011). Real-time human pose recognition in parts from single depth images. In CVPR 2011. IEEE, 1297-1304. https://doi.org/10.1109/CVPR.2011.5995316 Search in Google Scholar

[43] Li, J.F., Xu, Y.H., Chen, Y. (2006). A real-time 3D human body tracking and modeling system. In 2006 International Conference on Image Processing. IEEE, 2809-2812. https://doi.org/10.1109/ICIP.2006.312992 Search in Google Scholar

[44] Gu, J.H., Li, S., Liu, H.P. (2018). Human action recognition algorithm based on angle of skeletal vector. Transducer and Microsystem Technologies, 37 (2), 120-123. (in Chinese) https://doi.org/10.13873/J.1000-9787(2018)02-0120-04 Search in Google Scholar

Polecane artykuły z Trend MD

Zaplanuj zdalną konferencję ze Sciendo