Zacytuj

[1] Krolczyk, G., Gajek, M., Legutko, S. (2013). Predicting the tool life in the dry machining of duplex stainless steel. Eksploatcja i Niezawodnosc-Maintenance and Reliability, 15, 62-65. Search in Google Scholar

[2] Jun, S., Kochan, O. (2015). Common mode noise rejection in measuring channels. Instruments and Experimental Techniques, 58 (1), 86-89.10.1134/S0020441215010091 Search in Google Scholar

[3] Glowacz, A. (2021). Thermographic fault diagnosis of ventilation in BLDC motors. Sensors, 21 (21), 7245. https://doi.org/10.3390/s2121724510.3390/s21217245858783334770550 Search in Google Scholar

[4] Jun, S., Kochan, O., Kochan, R. (2016). Thermocouples with built-in self-testing. International Journal of Thermophysics, 37 (4), 1-9. https://doi.org/10.1007/s10765-016-2044-210.1007/s10765-016-2044-2 Search in Google Scholar

[5] Wang, J., Przystupa, K., Maksymovych, V., Stakhiv, R., Kochan, O. (2020). Computer modelling of two-level digital frequency synthesizer with Poisson probability distribution of output pulses. Measurement Science Review, 20 (2), 65-72. https://doi.org/10.2478/msr-2020-000910.2478/msr-2020-0009 Search in Google Scholar

[6] Greengard, S. (2015). The Internet of Things. MIT Press, ISBN 9780262527736.10.7551/mitpress/10277.001.0001 Search in Google Scholar

[7] Jun, S., Przystupa, K., Beshley, M., Kochan, O., Beshley, H., Klymash, M., Pieniak, D.A. (2020). Cost-efficient software based router and traffic generator for simulation and testing of IP network. Electronics, 9 (1), 40. https://doi.org/10.3390/electronics901004010.3390/electronics9010040 Search in Google Scholar

[8] Su, J., Kochan, O., Wang, C., Kochan, R. (2015). Theoretical and experimental research of error of method of thermocouple with controlled profile of temperature field. Measurement Science Review, 15 (6), 304-312. https://doi.org/10.1515/msr-2015-004110.1515/msr-2015-0041 Search in Google Scholar

[9] Fraczyk, A., Jaworski, T., Urbanek, P., Kucharski, J. (2014). The design for a smart high frequency generator for induction heating of loads. Przegląd Elektrotechniczny [Electrical Review], 2, 20-23. DOI 10.12915/pe.2014.02.6. Search in Google Scholar

[10] Song, W., Beshley, M., Przystupa, K., Beshley, H., Kochan, O., Pryslupskyi, A., Su, J. (2020). A software deep packet inspection system for network traffic analysis and anomaly detection. Sensors, 20 (6), 1637. https://doi.org/10.3390/s2006163710.3390/s20061637714631832183399 Search in Google Scholar

[11] Maksymovych, V., Shabatura, M., Harasymchuk, O., Karpinski, M., Jancarczyk, D., Sawicki, P. (2022). Development of additive Fibonacci generators with improved characteristics for cybersecurity needs. Applied Sciences, 12 (3), 1519. https://doi.org/10.3390/app1203151910.3390/app12031519 Search in Google Scholar

[12] Mandrona, M., Maksymovych, V., Harasymchuk, O., Kostiv, Y. (2014). Generator of pseudorandom bit sequence with increased cryptographic security. Metallurgical and Mining Industry, 5, 25-29. Search in Google Scholar

[13] Maksymovych, V., Harasymchuk, O., Karpinski, M., Shabatura, M., Jancarczyk, D., Kajstura, K. (2021). A new approach to the development of additive Fibonacci generators based on prime numbers. Electronics, 10, 2912. https://doi.org/10.3390/electronics1023291210.3390/electronics10232912 Search in Google Scholar

[14] Mandrona, M., Maksymovych, V. (2017). Comparative analysis of pseudorandom bit sequence generators. Journal of Automation and Information Sciences, 49 (3), 78-86. https://doi.org/10.1615/JAutomatInfScien.v49.i3.9010.1615/JAutomatInfScien.v49.i3.90 Search in Google Scholar

[15] Maksymovych, V., Harasymchuk, O., Mandrona, M. (2017). Designing generators of Poisson pulse sequences based on the additive Fibonacci generators. Journal of Automation and Information Sciences, 49 (12), 1-12.10.1615/JAutomatInfScien.v49.i12.10 Search in Google Scholar

[16] Maksymovych, V., Mandrona, M., Garasimchuk, O., Kostiv, Y. (2016). A study of the characteristics of the fibonacci modified additive generator with a delay. Journal of Automation and Information Sciences, 48 (11), 76-82.10.1615/JAutomatInfScien.v48.i11.70 Search in Google Scholar

[17] Maksymovych, V., Harasymchuk, O., Opirskyy, I. (2018). The designing and research of generators of Poisson pulse sequences on base of Fibonacci modified additive generator. In Advances in Computer Science for Engineering and Education. Springer, 43-53. https://doi.org/10.1007/978-3-319-91008-6_510.1007/978-3-319-91008-6_5 Search in Google Scholar

[18] Maksymovych, V., Mandrona, M., Harasymchuk, O. (2020). Dosimetric detector hardware simulation model based on modified additive Fibonacci generator. In Advances in Computer Science for Engineering and Education II. Springer, Vol. 938, 162-171. https://doi.org/10.1007/978-3-030-16621-2_1510.1007/978-3-030-16621-2_15 Search in Google Scholar

[19] Maksymovych, V., Mandrona, M., Kostiv, Y., Harasymchuk, O. (2017). Investigating the statistical characteristics of Poisson pulse sequences generators constructed in different ways. Journal of Automation and Information Sciences, 49 (10), 11-19.10.1615/JAutomatInfScien.v49.i10.20 Search in Google Scholar

[20] Agerblad, J., Andersen, M. (2013). Provably secure pseudo-random generators. Thesis, School of Computer Science and Communication, The Royal Institute of Technology, Stockhol, Sweden. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-134830. Search in Google Scholar

[21] Junod, P. (1999). Cryptographic secure pseudo-random bits generation: The Blum-Blum-Shub generator. http://crypto.junod.info/bbs.pdf Search in Google Scholar

[22] Shrestha, B. (2016). Multiprime Blum-Blum-Shub pseudorandom number generator. Thesis, Naval Postgraduate School, Monterey, CA. https://apps.dtic.mil/dtic/tr/fulltext/u2/1030047.pdf Search in Google Scholar

[23] Divyanjali, Ankur, Pareek, V. (2014). An overview of cryptographically secure pseudorandom number generators and BBS. In IJCA Proceedings of the International Conference on Advances in Computer Engineering and Applications ICACEA, 19-28. Search in Google Scholar

[24] Sodhi, G.K., Gaba, G.S. (2017). DNA and Blum Blum Shub random number generator based security key generation algorithm. International Journal of Security and its Applications, 11 (4), 1-10. http://dx.doi.org/10.14257/ijsia.2017.11.4.0110.14257/ijsia.2017.11.4.01 Search in Google Scholar

[25] Blum, L., Blum, M., Shub, M. (1983). Comparison of two pseudo-random number generators. In Advances in Cryptology: Proceedings of Crypto 82. Springer, 61-78. http://dx.doi.org/10.1007/978-1-4757-0602-4_610.1007/978-1-4757-0602-4_6 Search in Google Scholar

[26] Kapur, V., Paladi, S.T., Dubbakula, N. (2015). Two level image encryption using pseudo random number generators. International Journal of Computer Applications, 115 (12), 1-4. http://dx.doi.org/10.5120/20200-244610.5120/20200-2446 Search in Google Scholar

[27] Aissa, B., Khaled, M., Lakhdar, G. (2014). Implementation of Blum Blum Shub generator for message encryption. In Proceedings of the International Conference on Control, Engineering and Information Technology (CEIT’14). IPCO, 118-123. Search in Google Scholar

[28] Lopez, P., Millan, E., van der Lubbe, J., Entrena, L. (2010). Cryptographically secure pseudorandom bit generator for RFID tags. In 2010 International Conference for Internet Technology and Secured Transactions. IEEE, 1-6. Search in Google Scholar

[29] Panda, A., Ray, K. (2018). Design and FPGA prototype of 1024-bit Blum-Blum-Shub PRBG architecture. In 2018 IEEE International Conference on Information Communication and Signal Processing (ICICSP). IEEE, 38-43, DOI 10.1109/ICICSP.2018.8549715.10.1109/ICICSP.2018.8549715 Search in Google Scholar

[30] Rock, A. (2005). Pseudorandom number generators for cryptographic applications. Thesis, Universität Salzburg, Salzburg, Austria. https://cutt.ly/sPSuTVt Search in Google Scholar

[31] Hassan, N. (2017). Color images encryption using cipher system with different types of random number generator. International Journal of Innovative Research in Computer and Communication Engineering, 5 (5). Search in Google Scholar

[32] Omorog, C.D., Gerardo, B.D., Medina, R.P. (2018). Enhanced pseudorandom number generator based on Blum-Blum-Shub and elliptic curves. In 2018 IEEE Symposium on Computer Applications and Industrial Electronics (ISCAIE). IEEE, 269-274, DOI 10.1109/ISCAIE.2018.8405483.10.1109/ISCAIE.2018.8405483 Search in Google Scholar

[33] Siahaan, A.P.U. (2016). Blum Blum Shub in generating key in RC4. The International Journal of Science & Technoledge, 4 (10), 1-5. Search in Google Scholar

[34] Malohlovets, A., Maksymovych, V. (2017). Research of methods for improving statistical characteristics for cryptographically strong BBS pseudorandom number and bit generators. In Proceedings of the 6th International Academic Technical Conference “Information and Information Systems Security”, Lviv, Ukraine, 73-74. Search in Google Scholar

[35] Gawande, K., Mundle, M. (1999). Various implementations of Blum Blum Shub pseudo-random sequence generator. http://koclab.cs.ucsb.edu/teaching/cren/project/2005past/gawande-mundle.pdf Search in Google Scholar

[36] Blum, L., Blum, M., Shub, M. (1986). A simple unpredictable pseudorandom number generator. SIAM Journal on Computing, 15 (2), 364-383. https://doi.org/10.1137/021502510.1137/0215025 Search in Google Scholar

[37] Markov, I., Saeedi, M. (2012). Constant-optimized quantum circuits for modular multiplication and exponentiation. Quantum Information & Computation, 12 (5-6), 1-28.10.26421/QIC12.5-6-1 Search in Google Scholar

[38] Sewak, K., Rajput, P., Panda, A.K. (2012). FPGA implementation of 16 bit BBS and LFSR PN sequence generator: A comparative study. In 2012 IEEE Students’ Conference on Electrical, Electronics and Computer Science. IEEE, 769-773. DOI 10.1109/SCEECS.2012. 6184758.10.1109/SCEECS.2012.6184758 Search in Google Scholar

[39] Sidorenko, A., Schoenmakers, B. (2005). Concrete security of the Blum-Blum-Shub pseudorandom generator. In Cryptography and Coding: 10th IMA International Conference. Springer, Vol. 3796, 355-375. https://doi.org/10.1007/11586821_2410.1007/11586821_24 Search in Google Scholar

[40] Malohlovets, A., Maksymovych, V. (2016). Research of the methods for improving performance for cryptographically strong BBS pseudorandom bit sequences generators. In Proceedings of the 6th International Youth Science Forum “Litteris et Artibus”, Lviv, Ukraine, 54-55. Search in Google Scholar

eISSN:
1335-8871
Język:
Angielski
Częstotliwość wydawania:
6 razy w roku
Dziedziny czasopisma:
Engineering, Electrical Engineering, Control Engineering, Metrology and Testing